forked from TimaGradov/weight_based_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_original.py
530 lines (423 loc) · 19.1 KB
/
utils_original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import warnings
warnings.filterwarnings('ignore')
from collections import Counter, OrderedDict
import community
import json
import networkx as nx
import numpy as np
import pandas as pd
import pickle
import plotly.graph_objs as go
from plotly import tools
from plotly.offline import iplot, init_notebook_mode, plot
init_notebook_mode(connected=True)
from itertools import combinations
from numpy.linalg import norm
from scipy.spatial.distance import cosine, minkowski, jaccard, hamming
from tqdm import tqdm_notebook, tqdm
import random
import json
from functools import partial
from node2vec import Node2Vec
from sklearn.cluster import KMeans
def process_vectors(path):
with open(path, 'r') as f:
vect = json.load(f)
clear_vect = {}
for k, v in vect.items():
if sum(v) == 0:
continue
clear_vect[k] = (np.array(v) > 0).astype(int)
del vect
return clear_vect
def significance_normalization(vect, gamma = 0):
interests_array = np.array(list(vect.values()))
w_k = 1 - gamma * np.abs(interests_array).sum(0) / interests_array.shape[0]
normalized_vect = {}
for key, vector in vect.items():
normalized_vect[key] = vector * w_k
return normalized_vect, w_k
def calc_common_interests_stats(G, vect):
common_interests_number_list = []
for a, b in G.edges():
if (a not in vect) or (b not in vect):
continue
edge_score = np.sum(vect[a] * vect[b])
common_interests_number_list.append(edge_score)
common_interests_number_list = np.array(common_interests_number_list)
mu = np.mean(common_interests_number_list)
sigma = np.std(common_interests_number_list)
return common_interests_number_list, mu, sigma
# Exponential weight
def calc_gaussian_weight(a, b, mu, sigma):
common_interests = np.sum(np.array(a) * np.array(b))
answ = np.exp( - (common_interests - mu)**2 / (2*sigma**2))
return answ
def inner_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
res = np.inner(a, b) / l2_norm_squared / len(a)
return res
def cosine_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
return 1 - cosine(a, b)
def manhattan_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
return 1 - np.sum(np.abs(a-b)) / l1_norm / len(a)
def euclidean_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
res = 1 - np.sqrt(np.sum((a-b)**2)) / l2_norm / len(a)**0.5
return res
def jaccard_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
return 1 - jaccard(a, b)
# Matching coefficient
def hamming_sim(a, b, l1_norm, l2_norm, l2_norm_squared):
return 1 - hamming(a, b)
def calculate_similarity(G_n_f, l1_norm, l2_norm, l2_norm_squared, nodes, vect, similarity_metric, first_node):
similarity_vector = {}
for second_node in G_n_f.nodes():
attr_a, attr_b = vect[first_node], vect[second_node]
topic_similarity = similarity_metric(attr_a, attr_b, l1_norm, l2_norm, l2_norm_squared)
similarity_vector[second_node] = topic_similarity
sorted_sim_vect = sorted(similarity_vector.items(), key=lambda kv: kv[1], reverse=True)
return (first_node, sorted_sim_vect)
def not_fixed_topology_graph(G, vect, omega, similarity_metric, file_name):
l1_norm = norm(omega, 1)
l2_norm = norm(omega, 2)
l2_norm_squared = l2_norm ** 2
hs = open(file_name,"a")
similarity_matrix = []
for node in tqdm_notebook(G.nodes(), total=G.number_of_nodes(), leave=False):
hs.write(str(calculate_similarity(G, l1_norm, l2_norm, l2_norm_squared, G.nodes(), vect, similarity_metric, node)) + "\n")
hs.close()
return similarity_matrix
def create_weighted_graph_from_two_graphs(G_first, G_second, alpha=0.5):
G = nx.Graph()
first_edges = list(G_first.edges)
first_weight = G_first.size(weight='weight')
second_edges = list(G_second.edges)
second_weight = G_second.size(weight='weight')
for edge in tqdm_notebook(G_second.edges(data=True), total=G_second.number_of_edges(), leave=False):
G.add_edge(edge[0], edge[1], weight=(edge[2]['weight']/second_weight) * (1-alpha))
for i in tqdm_notebook(range(G_first.number_of_edges()), total=G_first.number_of_edges(), leave=False):
if G.has_edge(first_edges[i][0], first_edges[i][1]):
current_weight = G.get_edge_data(first_edges[i][0], first_edges[i][1])['weight']
G[first_edges[i][0]][first_edges[i][1]]['weight'] = current_weight + (1/first_weight) * alpha
else:
G.add_edge(first_edges[i][0], first_edges[i][1], weight=(1/first_weight) * alpha)
return G
# Gaussian_weighting
def create_weighted_graph(G, vect, mu, sigma, omega, similarity_metric,
alpha=0.5, gaussian_weighting=False):
G_w = G.copy()
representative_edges_num = 0
similarity_metric_sum = 0
mixed_weights_arr = []
l1_norm = norm(omega, 1)
l2_norm = norm(omega, 2)
l2_norm_squared = l2_norm ** 2
for a, b in tqdm_notebook(G_w.edges(), total=G_w.number_of_edges(), leave=False):
if (a not in vect) or (b not in vect):
continue
representative_edges_num += 1
attr_a, attr_b = vect[a], vect[b]
topic_similarity = similarity_metric(attr_a, attr_b, l1_norm, l2_norm, l2_norm_squared)
if gaussian_weighting == True:
w_g = calc_gaussian_weight(attr_a, attr_b, mu, sigma)
topic_gaussian_similarity = topic_similarity * w_g
similarity_metric_sum += topic_gaussian_similarity
else:
similarity_metric_sum += topic_similarity
for a, b in tqdm_notebook(G_w.edges(), total=G_w.number_of_edges(), leave=False):
if (a not in vect) or (b not in vect):
G_w[a][b]['weight'] = alpha
G_w[b][a]['weight'] = alpha
continue
attr_a, attr_b = vect[a], vect[b]
topic_similarity = similarity_metric(attr_a, attr_b, l1_norm, l2_norm, l2_norm_squared)
if gaussian_weighting == True:
w_g = calc_gaussian_weight(attr_a, attr_b, mu, sigma)
topic_gaussian_similarity = topic_similarity * w_g
mixed_weight = (alpha * G_w[a][b]['weight'] / representative_edges_num + (1-alpha) * topic_gaussian_similarity / similarity_metric_sum) * representative_edges_num
else:
mixed_weight = (alpha * G_w[a][b]['weight'] / representative_edges_num + (1-alpha) * topic_similarity / similarity_metric_sum) * representative_edges_num
mixed_weight = max(mixed_weight, 0)
G_w[a][b]['weight'] = mixed_weight
G_w[b][a]['weight'] = mixed_weight
mixed_weights_arr.append(mixed_weight)
mixed_weights_stats = pd.Series(mixed_weights_arr).describe().values[1:]
return G_w, mixed_weights_stats
def entropy(G, clusters, vect):
for v in vect.values():
attr_num = v.shape[0]
break
entropy = 0
active_nodes = 0
for cluster in clusters:
cluster_matr = []
for node in cluster:
if node not in vect:
continue
cluster_matr.append(vect[node])
cluster_matr = np.array(cluster_matr)
ones_count = cluster_matr.sum(0)
zeros_count = cluster_matr.shape[0] - ones_count
ones_proportion = ones_count / cluster_matr.shape[0] + 1e-5
zeros_proportion = zeros_count / cluster_matr.shape[0] + 1e-5
entropy_per_cluster = -np.sum(ones_proportion * np.log2(ones_proportion) + \
zeros_proportion * np.log2(zeros_proportion)) / attr_num
entropy += entropy_per_cluster
active_nodes += cluster_matr.shape[0]
entropy_avg = entropy / active_nodes
return entropy_avg
def calc_intra_cluster_density(clusters, G):
intra_cluster_density = 0
cluster_density = 0
for c in clusters:
nodes_clust = set(c)
e_in = 0
for node in c:
nbr = set(G.neighbors(node))
inside_cluster = len(nbr.intersection(nodes_clust))
e_in += inside_cluster / 2
if (len(nodes_clust) == 1):
cluster_density = 1
else:
cluster_density = e_in / (len(nodes_clust) * (len(nodes_clust) - 1) / 2)
intra_cluster_density += cluster_density
return intra_cluster_density / len(clusters)
def calc_inter_cluster_density(clusters, G):
inter_cluster_density = 0
cluster_density = 0
for c in clusters:
nodes_clust = set(c)
e_out = 0
for node in c:
nbr = set(G.neighbors(node))
inside_cluster = len(nbr.intersection(nodes_clust))
outside_cluster = (len(nbr) - inside_cluster)
e_out += outside_cluster / 2
if (len(nodes_clust) * (G.number_of_nodes() - len(nodes_clust)) == 0):
cluster_density = e_out
else:
cluster_density = e_out / (len(nodes_clust) * (G.number_of_nodes() - len(nodes_clust)))
inter_cluster_density += cluster_density
return inter_cluster_density / len(clusters)
def calc_cluster_density(clusters, G):
cluster_density = 0
for c in clusters:
nodes_clust = set(c)
e_in = 0
e_out = 0
for node in c:
nbr = set(G.neighbors(node))
inside_cluster = len(nbr.intersection(nodes_clust))
outside_cluster = (len(nbr) - inside_cluster)
e_in += inside_cluster / 2
e_out += outside_cluster / 2
cluster_density = (e_in - e_out) / G.number_of_edges()
return cluster_density
def calc_cluster_harmony(clusters, G, vect, similarity_metric, omega):
l1_norm = norm(omega, 1)
l2_norm = norm(omega, 2)
l2_norm_squared = l2_norm ** 2
cluster_harmony = 0
h_in = 0
h_out = 0
for c in clusters:
nodes_clust = set(c)
for node in c:
nbr = set(G.neighbors(node))
inside_nbr = nbr.intersection(nodes_clust)
outside_nbr = nbr.difference(nodes_clust)
for in_node in inside_nbr:
attr_a, attr_b = vect[node], vect[in_node]
node_sim = similarity_metric(attr_a, attr_b, l1_norm, l2_norm, l2_norm_squared)
h_in += node_sim / 2
for out_node in outside_nbr:
attr_a, attr_b = vect[node], vect[out_node]
node_sim = similarity_metric(attr_a, attr_b, l1_norm, l2_norm, l2_norm_squared)
h_out += node_sim / 2
cluster_harmony = (h_in - h_out) / G.number_of_edges()
return cluster_harmony
def calc_modularity_density(clusters, G):
modularity_density = 0
for c in clusters:
nodes_clust = set(c)
e_in = 0
e_out = 0
for node in c:
nbr = set(G.neighbors(node))
inside_cluster = len(nbr.intersection(nodes_clust))
outside_cluster = (len(nbr) - inside_cluster)
e_in += inside_cluster / 2
e_out += outside_cluster / 2
nodes_num = len(nodes_clust)
d_in = 2 * e_in / nodes_num
d_out = 2 * e_out / nodes_num
d_per_cluster = (d_in - d_out)
modularity_density += d_per_cluster
modularity_density /= len(clusters)
return modularity_density
def permanence(partition, G):
perm = 0
olo = 0
for node, comm in partition.items():
degree = G.degree(node)
other_communities_nbr = []
same_community_nbr = []
for nbr in G.neighbors(node):
nbr_comm = partition[nbr]
if nbr_comm == comm:
same_community_nbr.append(nbr)
else:
other_communities_nbr.append(nbr_comm)
i_v = len(same_community_nbr)
if len(other_communities_nbr) > 1:
e_max = Counter(other_communities_nbr).most_common(1)[0][1]
else:
e_max = 1
c_in = local_clustering_coefficinet(same_community_nbr, G)
perm_node = i_v / e_max / degree - (1 - c_in)
perm += perm_node
perm /= G.number_of_nodes()
return perm
def local_clustering_coefficinet(nbrs, G):
numerator = 0
denominator = 0
for edge in combinations(nbrs, 2):
numerator += int(edge in G.edges())
denominator += 1
denominator = max(denominator, 1)
return numerator / denominator
def node2vec_partition(G_w):
node2vec = Node2Vec(G_w, dimensions=128, num_walks=100,
workers=1)
model = node2vec.fit(window=6, workers=1)
kmeans = KMeans(n_clusters=10, n_jobs=1)
nodes = list(G_w.nodes())
node_embeddings = np.array([model.wv.get_vector(node)
for node in nodes])
kmeans.fit(node_embeddings)
partition = dict(zip(nodes, kmeans.labels_.tolist()))
return partition
def generate_report(clusters, vect, names):
number_of_active_nodes = len(vect)
attribute_full_matrix = np.array(list(vect.values()))
attribute_full_freqs = attribute_full_matrix.sum(0) / attribute_full_matrix.shape[0]
report = []
for n, cluster in enumerate(clusters):
attribute_cluster_matrix = []
for node in cluster:
if node not in vect:
continue
attribute_cluster_matrix.append(vect[node])
if len(attribute_cluster_matrix) < 15:
continue
attribute_cluster_matrix = np.array(attribute_cluster_matrix)
attribute_cluster_freqs = attribute_cluster_matrix.sum(0) / attribute_cluster_matrix.shape[0]
cluster_coefs = attribute_cluster_freqs / attribute_full_freqs
cluster_coefs = np.round(cluster_coefs, 2)
cluster_coefs = [len(attribute_cluster_matrix)] + cluster_coefs.tolist()
report.append(cluster_coefs)
cols = ['nodes_number'] + list(names)
report_df = pd.DataFrame(report, columns=cols)
return report_df
def calc_tau(report_df):
zz = report_df.iloc[:, 1:]
k = zz / zz.mean()
cumul_tau = 0
log = []
for n, row in k.iterrows():
a = sum([i if i > 1 else 0 for i in row ])
b = np.nansum(row.values)
cumul_tau += a / b
log.append(a / b)
if (k.shape[0] != 0):
cumul_tau /= k.shape[0]
return cumul_tau, dict(enumerate(log))
def vizualize_report(report_df, fname):
report_df.iloc[:, 1:] = report_df.iloc[:, 1:].clip(0, 3)
data = [
go.Heatmap(
x = report_df.columns.tolist()[1:],
y = list(map(lambda x: x+1, report_df.index.tolist())),
z = report_df.iloc[:, 1:].values.tolist(),
xgap = .1,
ygap = 1,
colorscale='Viridis',
)
]
layout = go.Layout(
title='Community interests',
xaxis = dict(title='Categories'),
yaxis = dict(dtick=1, title='Cluster number' ),
font = dict(
size = 16,
)
)
fig = go.Figure(data=data, layout=layout)
plot(fig, filename='heatmaps/' + fname + '.html', auto_open=False)
def dump_partition(partition, fname):
dump_fname = 'partitions/' + fname + '.json'
with open(dump_fname, 'w+') as f:
json.dump(partition, f)
def calculate_metrics(G, modified_G, vect, names, significance_normalized_vect,
mu, sigma, omega, similarity_metric,
alpha, gaussian_weighting, fname='foobar.html', algo='louvain', viz=True, avg_by=10, dump_par=False):
G_w, mixed_weights_stats = create_weighted_graph(modified_G, significance_normalized_vect,
mu, sigma, omega, similarity_metric=similarity_metric,
alpha=alpha, gaussian_weighting=gaussian_weighting)
modularity_list = np.zeros(shape=(avg_by,1))
modified_modularity_list = np.zeros(shape=(avg_by,1))
attr_modularity_list = np.zeros(shape=(avg_by,1))
modularity_density_list = np.zeros(shape=(avg_by,1))
perm_list = np.zeros(shape=(avg_by,1))
graph_entropy_list = np.zeros(shape=(avg_by,1))
tau_list = np.zeros(shape=(avg_by,1))
cluster_density_list = np.zeros(shape=(avg_by,1))
cluster_harmony_list = np.zeros(shape=(avg_by,1))
inter_cluster_density_list = np.zeros(shape=(avg_by,1))
intra_cluster_density_list = np.zeros(shape=(avg_by,1))
for i in range(avg_by):
if algo == 'louvain':
partition = community.best_partition(G_w)
elif algo == 'node2vec':
partition = node2vec_partition(G_w)
clusters = [[] for i in set(partition.values())]
for k, v in partition.items():
clusters[v].append(k)
modularity_list[i] = community.modularity(partition, G, weight='weight')
modified_modularity_list[i] = community.modularity(partition, G_w, weight='weight')
modularity_density_list[i] = calc_modularity_density(clusters, G)
perm_list[i] = permanence(partition, G)
graph_entropy_list[i] = entropy(G, clusters, vect)
cluster_density_list[i] = calc_cluster_density(clusters, G)
cluster_harmony_list[i] = calc_cluster_harmony(clusters, G, vect, similarity_metric, omega)
inter_cluster_density_list[i] = calc_inter_cluster_density(clusters, G)
intra_cluster_density_list[i] = calc_intra_cluster_density(clusters, G)
if dump_par:
dump_partition(partition, fname)
report_df = generate_report(clusters, vect, names)
tau_list[i], _ = calc_tau(report_df)
if viz:
vizualize_report(report_df, fname)
metrics_report = {}
metrics_report['modularity_mean'] = np.mean(modularity_list)
metrics_report['modularity_std'] = np.std(modularity_list)
metrics_report['mod_modularity_mean'] = np.mean(modified_modularity_list)
metrics_report['mod_modularity_std'] = np.std(modified_modularity_list)
metrics_report['attr_modularity_mean'] = np.mean(attr_modularity_list)
metrics_report['attr_modularity_std'] = np.std(attr_modularity_list)
metrics_report['permanence_mean'] = np.mean(perm_list)
metrics_report['permanence_std'] = np.std(perm_list)
metrics_report['graph_entropy_mean'] = np.mean(graph_entropy_list)
metrics_report['graph_entropy_std'] = np.std(graph_entropy_list)
metrics_report['tau_mean'] = np.mean(tau_list)
metrics_report['tau_std'] = np.std(tau_list)
metrics_report['modularity_density_mean'] = np.mean(modularity_density_list)
metrics_report['modularity_density_std'] = np.std(modularity_density_list)
metrics_report['cluster_density_mean'] = np.mean(cluster_density_list)
metrics_report['cluster_density_std'] = np.std(cluster_density_list)
metrics_report['cluster_harmony_mean'] = np.mean(cluster_harmony_list)
metrics_report['cluster_harmony_std'] = np.std(cluster_harmony_list)
metrics_report['inter_cluster_density_mean'] = np.mean(inter_cluster_density_list)
metrics_report['inter_cluster_density_std'] = np.std(inter_cluster_density_list)
metrics_report['intra_cluster_density_mean'] = np.mean(intra_cluster_density_list)
metrics_report['intra_cluster_density_std'] = np.std(intra_cluster_density_list)
return metrics_report, clusters, G, vect, partition