Skip to content

AliOsm/translation-over-diacritization

Repository files navigation

Translation-over-Diacritization

This repository contains the implementation for the Translation-over-Diacritization technique descriped in our paper on Arabic Text Diacritization:

"Neural Arabic Text Diacritization: State of the Art Results and a Novel Approach for Machine Translation", Ali Fadel, Ibraheem Tuffaha, Bara' Al-Jawarneh and Mahmoud Al-Ayyoub, EMNLP-IJCNLP 2019.

The work uses diacritics to improve the results of Arabic->English translation while avoiding vocabulary sparsity that leads to out-of-vocabulary issues.

0. Prerequisites

  • Tested with Python 3.6.8
  • Install required packages listed in requirements.txt file
    • pip install -r requirements.txt
  • Download and unzip the Arabic-English parallel corpora from OPUS project and extract them in data_dir/tmx folder
    • WEBSITE_LINK=https://object.pouta.csc.fi
    • wget "$WEBSITE_LINK"/OPUS-GlobalVoices/v2017q3/tmx/ar-en.tmx.gz -O GlobalVoices_v2017q3.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-MultiUN/v1/tmx/ar-en.tmx.gz -O MultiUN_v1.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-News-Commentary/v11/tmx/ar-en.tmx.gz -O News-Commentary_v11.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-Tatoeba/v2/tmx/ar-en.tmx.gz -O Tatoeba_v2.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-TED2013/v1.1/tmx/ar-en.tmx.gz -O TED2013_v1.1.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-Ubuntu/v14.10/tmx/ar-en.tmx.gz -O Ubuntu_v14.10.tmx.gz
    • wget "$WEBSITE_LINK"/OPUS-Wikipedia/v1.0/tmx/ar-en.tmx.gz -O Wikipedia_v1.0.tmx.gz
    • mv *.gz data_dir/tmx
    • gunzip data_dir/tmx/*.gz
  • Clone both Shakkelha and mosesdecoder dependency repositories
    • git clone https://github.com/AliOsm/shakkelha.git
    • git clone https://github.com/moses-smt/mosesdecoder.git

1. Data Extraction

To extract the data, run the following command:

python 1_extract_data.py

2. Data Preparing and Splitting

To prepare, segment (using Byte Pair Encoding), and split the data into training and testing, run the following command:

sh 2_prepare_data.sh

3. Remove Long Lines

Some lines gain a lot of tokens after the segmentation process in step 2, so run the following command to remove them:

python 3_remove_long_lines.py

4. Diacritize Arabic Data

To diacritize the Arabic data extracted in step 1, run the following command:

sh 4_diacritize_ar_data.sh

5. Merge Diacritics with Segmented Text

To merge the diacritics from the diacritized Arabic text generated from step 4 with the segmented Arabic text from step 2, run the following command:

python 5_merge_diacritics_with_bpe.py

6. Train the Model

To train the model, run the following command:

python 6_seq2seq.py --use-diacs True
python 6_seq2seq.py --use-diacs False

The value of the boolean parameter USE_DIACS determines whether to train the model with or without diacritics.

7. Detokenize Predicted Translations (Remove BPE special characters)

To detokenize the predicted translations, run the following command:

sh 7_detok_predictions.sh

8. Calculate BLEU scores

To calculate the BLEU scores, run the following command:

sh 8_calculate_bleu.sh

Model Structure

The following figure illustrates our model structure

Note: All codes in this repository tested on Ubuntu 18.04

Contributors

  1. Ali Hamdi Ali Fadel.
  2. Ibraheem Tuffaha.
  3. Mahmoud Al-Ayyoub.

License

The project is available as open source under the terms of the MIT License.

Releases

No releases published

Packages

No packages published