forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-megatron.sh
299 lines (268 loc) · 6.54 KB
/
run-megatron.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!/bin/bash
# [Note]: Commands in this script should be run under Megatron-LM folder
set -ex
GPUS_PER_NODE=8
[ -z "$RANK" ] && RANK=0
[ -z "$WORLD_SIZE" ] && WORLD_SIZE=1
[ -z "$MASTER_ADDR" ] && MASTER_ADDR=127.0.0.1
[ -z "$MASTER_PORT" ] && MASTER_PORT=29500
ATTN_TYPE="flash"
MBS=2
RANDOM_INIT=0
GC=0 # 采用fullgc
SELECTIVE_GC=0 # 采用selective gc
GC_CNT=0
GBS=16
TORCH_PROFILE=0
TRAIN_ITERS=10000
SEQ_LEN=2048
TP_SIZE=1
PP_SIZE=1
VP_SIZE=1
SP=0 # 是否使用Sequence Parallelism,默认degree为TP_SIZE
LOG_INTERVAL=3
MODEL_NAME="llama-3"
MODEL_SIZE="8B"
TOKENIZER_CLASS="Llama3Tokenizer"
TOKENIZER_MODEL="tokenizer/llama-3/tokenizer.model"
# 解析命令行参数
while [[ "$#" -gt 0 ]]; do
echo "$1" "$2"
case $1 in
--model-name)
MODEL_NAME="$2"
shift
;;
--model-size)
MODEL_SIZE="$2"
shift
;;
--attn-type)
ATTN_TYPE="$2"
shift
;;
--seq-len)
SEQ_LEN="$2"
shift
;;
--mbs)
MBS="$2"
shift
;;
--tp)
TP_SIZE="$2"
shift
;;
--pp)
PP_SIZE="$2"
shift
;;
--vp)
VP_SIZE="$2"
shift
;;
--sp)
SP=1
;;
--gbs)
GBS="$2"
shift
;;
--random-init)
RANDOM_INIT=1
;;
--gc)
GC=1
;;
--selective-gc)
SELECTIVE_GC=1
;;
--gc-cnt)
GC_CNT="$2"
shift
;;
--torch-profile)
TORCH_PROFILE=1
;;
--train-iters)
TRAIN_ITERS="$2"
shift
;;
--log-interval)
LOG_INTERVAL="$2"
shift
;;
*)
echo "Unknown parameter passed: $1"
exit 1
;;
esac
shift
done
# selective gc和gc不能同时为1
if [[ $GC -eq 1 && $SELECTIVE_GC -eq 1 ]]; then
echo "Error: selective gc and full gc cannot be both 1"
exit 1
fi
# 设置环境变量
export CUDA_DEVICE_MAX_CONNECTIONS=1
if [[ $MODEL_NAME == "llama-3" ]]; then
TOKENIZER_CLASS="Llama3Tokenizer"
TOKENIZER_MODEL="tokenizer/${MODEL_NAME}/tokenizer.model"
else
echo "Unknown model name: $MODEL_NAME"
exit 1
fi
if [[ $MODEL_SIZE == "8B" ]]; then
NUM_LAYERS=32
HIDDEN_SIZE=4096
NUM_ATTENTION_HEADS=32
INTERMEDIATE_SIZE=14336
# could add more sizes here
elif [[ $MODEL_SIZE == "70B" ]]; then
NUM_LAYERS=80
HIDDEN_SIZE=8192
NUM_ATTENTION_HEADS=64
INTERMEDIATE_SIZE=28672
else
echo "Unknown model size: $MODEL_SIZE"
exit 1
fi
if [[ "$ATTN_TYPE" == "flash" ]]; then
export NVTE_FLASH_ATTN=1
export NVTE_FUSED_ATTN=0
export NVTE_UNFUSED_ATTN=0
elif [[ "$ATTN_TYPE" == "fused" ]]; then
export NVTE_FLASH_ATTN=0
export NVTE_FUSED_ATTN=1
export NVTE_UNFUSED_ATTN=0
elif [[ "$ATTN_TYPE" == "unfused" ]]; then
export NVTE_FLASH_ATTN=0
export NVTE_FUSED_ATTN=0
export NVTE_UNFUSED_ATTN=1
else
echo "Unknown attention type: $ATTN_TYPE"
exit 1
fi
# 如果 num_layers不能整除 vp_size,则报错
if [[ $((NUM_LAYERS % VP_SIZE)) -ne 0 ]]; then
echo "Error: num_layers should be divisible by vp_size"
exit 1
fi
# num layers / pp size 必须整除 vp size
if [[ $((NUM_LAYERS / PP_SIZE % VP_SIZE)) -ne 0 ]]; then
echo "Error: num_layers / pp_size should be divisible by vp_size"
exit 1
fi
MODEL_ARGS=()
# 设置随机初始化参数
if [[ "$RANDOM_INIT" -eq 1 ]]; then
MODEL_ARGS+=(
--num-layers ${NUM_LAYERS}
--hidden-size ${HIDDEN_SIZE}
--num-attention-heads ${NUM_ATTENTION_HEADS}
--seq-length ${SEQ_LEN}
--max-position-embeddings 8192
--num-query-groups 8
--group-query-attention
--position-embedding-type rope
--use-rotary-position-embeddings
--disable-bias-linear
--ffn-hidden-size ${INTERMEDIATE_SIZE}
--swiglu
--bf16
)
else
MODEL_ARGS+=(
--seq-length ${SEQ_LEN}
--bf16
--use-checkpoint-args
--load ../models/${MODEL_NAME}-${MODEL_SIZE}-megatron-tp${TP_SIZE}-bf161
)
fi
DISTRIBUTED_ARGS=(
--nproc_per_node $GPUS_PER_NODE
--node_rank $RANK
--nnodes $WORLD_SIZE
--master_addr $MASTER_ADDR
--master_port $MASTER_PORT
)
TRAINING_ARGS=(
--micro-batch-size ${MBS}
--global-batch-size ${GBS}
--train-iters 10000
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--lr 6.0e-5
--lr-decay-style cosine
--min-lr 6.0e-6
--lr-warmup-fraction .001
--lr-decay-iters 100000
--train-iters ${TRAIN_ITERS}
)
if [[ "$GC" -eq 1 ]]; then
TRAINING_ARGS+=(
--recompute-granularity full
--recompute-method block
--recompute-num-layers ${GC_CNT}
)
fi
if [[ "$SELECTIVE_GC" -eq 1 ]]; then
TRAINING_ARGS+=(
--recompute-activations
)
fi
MODEL_PARALLEL_ARGS=(
--tensor-model-parallel-size ${TP_SIZE}
--pipeline-model-parallel-size ${PP_SIZE}
)
EXTRA_ARGS=(
--tokenizer-type ${TOKENIZER_CLASS}
--tokenizer-model ${TOKENIZER_MODEL}
--exit-on-missing-checkpoint
--no-load-optim
--no-load-rng
--untie-embeddings-and-output-weights
--no-masked-softmax-fusion
--attention-softmax-in-fp32
--overlap-grad-reduce
--overlap-param-gather
# --tp-comm-overlap
--use-distributed-optimizer
--normalization RMSNorm
--transformer-impl transformer_engine
--log-interval ${LOG_INTERVAL}
)
# 如果vp >= 2,则在extra_args里加上vp_size
if [[ "$VP_SIZE" -ge 2 ]]; then
EXTRA_ARGS+=(
--num-layers-per-virtual-pipeline-stage ${VP_SIZE}
)
fi
if [[ "$TORCH_PROFILE" -eq 1 ]]; then
EXTRA_ARGS+=(
--torch-profile
)
fi
if [[ "$SP" -eq 1 ]]; then
EXTRA_ARGS+=(
--sequence-parallel
# --tp-comm-overlap
)
fi
DATA_ARGS=(
--data-path ./data/_text_document
)
LOG_DIR="logs"
# 生成日志文件名称
log_filename="${LOG_DIR}/${MODEL_NAME}-${MODEL_SIZE}_dev_attn-${ATTN_TYPE}_mbs-${MBS}_gbs-${GBS}_gc${GC}_gc_cnt-${GC_CNT}_random_init${RANDOM_INIT}_tp-${TP_SIZE}_pp-${PP_SIZE}.log"
mkdir -p ${LOG_DIR}
torchrun ${DISTRIBUTED_ARGS[@]} pretrain_gpt.py \
${DATA_ARGS[@]} \
${MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${EXTRA_ARGS[@]} 2>&1 | tee "$log_filename"