-
Notifications
You must be signed in to change notification settings - Fork 190
/
Copy pathexample.py
285 lines (218 loc) · 10.4 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import sys
import argparse
import numpy as np
import cv2
import datetime
import time
import pytz
import json
from modules.file_loading import load_document
from modules.formula_recognition import FormulaRecognition
from pipelines.general_text_reading import GeneralTextReading
from pipelines.table_parsing import TableParsing
from pipelines.document_structurization import DocumentStructurization
from utilities.visualization import *
def general_text_reading_example(image):
# configure
configs = dict()
text_detection_configs = dict()
text_detection_configs['from_modelscope_flag'] = True
text_detection_configs['model_path'] = 'damo/cv_resnet18_ocr-detection-line-level_damo'
configs['text_detection_configs'] = text_detection_configs
text_recognition_configs = dict()
text_recognition_configs['from_modelscope_flag'] = True
text_recognition_configs['model_path'] = 'damo/cv_convnextTiny_ocr-recognition-general_damo' # alternatives: 'damo/cv_convnextTiny_ocr-recognition-scene_damo', 'damo/cv_convnextTiny_ocr-recognition-document_damo', 'damo/cv_convnextTiny_ocr-recognition-handwritten_damo'
configs['text_recognition_configs'] = text_recognition_configs
# initialize
text_reader = GeneralTextReading(configs)
# run
final_result = text_reader(image)
if True:
print (final_result)
# visualize
output_image = general_text_reading_visualization(final_result, image)
# release
text_reader.release()
return final_result, output_image
def table_parsing_example(image):
# configure
configs = dict()
table_structure_recognition_configs = dict()
table_structure_recognition_configs['from_modelscope_flag'] = True
table_structure_recognition_configs['model_path'] = 'damo/cv_dla34_table-structure-recognition_cycle-centernet'
configs['table_structure_recognition_configs'] = table_structure_recognition_configs
text_detection_configs = dict()
text_detection_configs['from_modelscope_flag'] = True
text_detection_configs['model_path'] = 'damo/cv_resnet18_ocr-detection-line-level_damo'
configs['text_detection_configs'] = text_detection_configs
text_recognition_configs = dict()
text_recognition_configs['from_modelscope_flag'] = True
text_recognition_configs['model_path'] = 'damo/cv_convnextTiny_ocr-recognition-general_damo' # alternatives: 'damo/cv_convnextTiny_ocr-recognition-scene_damo', 'damo/cv_convnextTiny_ocr-recognition-document_damo', 'damo/cv_convnextTiny_ocr-recognition-handwritten_damo'
configs['text_recognition_configs'] = text_recognition_configs
# initialize
table_parser = TableParsing(configs)
# run
final_result = table_parser(image)
if True:
print (final_result)
# visualize
output_image = table_parsing_visualization(final_result, image)
# release
table_parser.release()
return final_result, output_image
def formula_recognition_example(image):
# configure
configs = dict()
formula_recognition_configs = dict()
formula_recognition_configs['from_modelscope_flag'] = False
formula_recognition_configs['image_resizer_path'] = '/home/LaTeX-OCR_image_resizer.onnx'
formula_recognition_configs['encoder_path'] = '/home/LaTeX-OCR_encoder.onnx'
formula_recognition_configs['decoder_path'] = '/home/LaTeX-OCR_decoder.onnx'
formula_recognition_configs['tokenizer_json'] = '/home/LaTeX-OCR_tokenizer.json'
configs['formula_recognition_configs'] = formula_recognition_configs
# initialize
formula_recognizer = FormulaRecognition(configs['formula_recognition_configs'])
# run
result = formula_recognizer(image)
formula_latex = '$$ ' + result + ' $$'
final_result = {'formula_latex': formula_latex}
if True:
print (final_result)
# release
formula_recognizer.release()
return final_result
def document_structurization_example(image):
# configure
configs = dict()
layout_analysis_configs = dict()
layout_analysis_configs['from_modelscope_flag'] = False
layout_analysis_configs['model_path'] = '/home/DocXLayout_231012.pth' # note that: currently the layout analysis model is NOT from modelscope
configs['layout_analysis_configs'] = layout_analysis_configs
text_detection_configs = dict()
text_detection_configs['from_modelscope_flag'] = True
text_detection_configs['model_path'] = 'damo/cv_resnet18_ocr-detection-line-level_damo'
configs['text_detection_configs'] = text_detection_configs
text_recognition_configs = dict()
text_recognition_configs['from_modelscope_flag'] = True
text_recognition_configs['model_path'] = 'damo/cv_convnextTiny_ocr-recognition-document_damo' # alternatives: 'damo/cv_convnextTiny_ocr-recognition-scene_damo', 'damo/cv_convnextTiny_ocr-recognition-general_damo', 'damo/cv_convnextTiny_ocr-recognition-handwritten_damo'
configs['text_recognition_configs'] = text_recognition_configs
formula_recognition_configs = dict()
formula_recognition_configs['from_modelscope_flag'] = False
formula_recognition_configs['image_resizer_path'] = '/home/LaTeX-OCR_image_resizer.onnx'
formula_recognition_configs['encoder_path'] = '/home/LaTeX-OCR_encoder.onnx'
formula_recognition_configs['decoder_path'] = '/home/LaTeX-OCR_decoder.onnx'
formula_recognition_configs['tokenizer_json'] = '/home/LaTeX-OCR_tokenizer.json'
configs['formula_recognition_configs'] = formula_recognition_configs
# initialize
document_structurizer = DocumentStructurization(configs)
# run
final_result = document_structurizer(image)
if True:
print (final_result)
# visualize
output_image = document_structurization_visualization(final_result, image)
# release
document_structurizer.release()
return final_result, output_image
def whole_pdf_conversion_example(image_list):
# configure
configs = dict()
layout_analysis_configs = dict()
layout_analysis_configs['from_modelscope_flag'] = False
layout_analysis_configs['model_path'] = '/home/DocXLayout_231012.pth' # note that: currently the layout analysis model is NOT from modelscope
configs['layout_analysis_configs'] = layout_analysis_configs
text_detection_configs = dict()
text_detection_configs['from_modelscope_flag'] = True
text_detection_configs['model_path'] = 'damo/cv_resnet18_ocr-detection-line-level_damo'
configs['text_detection_configs'] = text_detection_configs
text_recognition_configs = dict()
text_recognition_configs['from_modelscope_flag'] = True
text_recognition_configs['model_path'] = 'damo/cv_convnextTiny_ocr-recognition-document_damo' # alternatives: 'damo/cv_convnextTiny_ocr-recognition-scene_damo', 'damo/cv_convnextTiny_ocr-recognition-general_damo', 'damo/cv_convnextTiny_ocr-recognition-handwritten_damo'
configs['text_recognition_configs'] = text_recognition_configs
formula_recognition_configs = dict()
formula_recognition_configs['from_modelscope_flag'] = False
formula_recognition_configs['image_resizer_path'] = '/home/LaTeX-OCR_image_resizer.onnx'
formula_recognition_configs['encoder_path'] = '/home/LaTeX-OCR_encoder.onnx'
formula_recognition_configs['decoder_path'] = '/home/LaTeX-OCR_decoder.onnx'
formula_recognition_configs['tokenizer_json'] = '/home/LaTeX-OCR_tokenizer.json'
configs['formula_recognition_configs'] = formula_recognition_configs
# initialize
document_structurizer = DocumentStructurization(configs)
# run
final_result = []
page_index = 0
for image in image_list:
result = document_structurizer(image)
page_info = {'page': page_index, 'information': result}
final_result.append(page_info)
page_index = page_index + 1
if True:
print (final_result)
# release
document_structurizer.release()
return final_result
# main routine
def main():
"""
Description:
a demo to showcase the pipelines
"""
# parse parameters
parser = argparse.ArgumentParser()
parser.add_argument("task", choices = ['general_text_reading', 'table_parsing', 'formula_recognition', 'document_structurization', 'whole_pdf_conversion'], help = "specify the task to be performed", type = str)
parser.add_argument("document_path", help = "specify the path of the document (supported formats: JPG, PNG, and PDF) to be processed", type = str)
parser.add_argument("output_path", help = "specify the path of the image with visulization or the json file for storage", type = str)
args = parser.parse_args()
# start
tz = pytz.timezone('Asia/Shanghai')
now = datetime.datetime.now(tz)
print (now.strftime("%Y-%m-%d %H:%M:%S"))
print ("Started!")
# load document
image = None
image_list = None
if args.task == 'whole_pdf_conversion':
name = args.document_path.lower()
if name.endswith('.pdf'):
image_list = load_document(args.document_path, whole_flag = True)
else:
print ('For the whole PDF conversion task, only PDF files are supported!')
else:
image = load_document(args.document_path)
# process
final_result = None
output_image = None
if image is not None or image_list is not None:
if args.task == 'general_text_reading':
final_result, output_image = general_text_reading_example(image)
elif args.task == 'table_parsing':
final_result, output_image = table_parsing_example(image)
elif args.task == 'formula_recognition':
final_result = formula_recognition_example(image)
elif args.task == 'document_structurization':
final_result, output_image = document_structurization_example(image)
else: # args.task == 'whole_pdf_conversion'
final_result = whole_pdf_conversion_example(image_list)
else:
print ("Failed to load the document file!")
# dump
name = args.output_path.lower()
if name.endswith('.png'):
if output_image is not None:
cv2.imwrite(args.output_path, output_image)
elif name.endswith('.json'):
if final_result is not None:
with open(args.output_path, 'w') as json_file:
json.dump(final_result, json_file, indent = 4)
else:
pass
# finish
now = datetime.datetime.now(tz)
print (now.strftime("%Y-%m-%d %H:%M:%S"))
print ("Finished!")
return
if __name__ == "__main__":
# execute only if run as a script
main()