-
Notifications
You must be signed in to change notification settings - Fork 191
/
Copy pathtest_FID.py
178 lines (138 loc) · 5.82 KB
/
test_FID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import os
import copy
from baselines_model.vae import VAE
from markuplm import MarkupLMConfig, MarkupLMModel
from baselines_model.FID_model import FIDBackbone, FIDWebModel
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import random
import argparse
import json
import numpy as np
random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def matrix_sqrt(matrix):
eigenvalues, eigenvectors = np.linalg.eig(matrix)
sqrt_eigenvalues = np.sqrt(np.abs(eigenvalues))
sqrt_matrix = eigenvectors @ np.diag(sqrt_eigenvalues) @ np.linalg.inv(eigenvectors)
return sqrt_matrix
def calculate_fid(act1, act2):
mu1, sigma1 = act1.mean(axis=0), np.cov(act1, rowvar=False)
mu2, sigma2 = act2.mean(axis=0), np.cov(act2, rowvar=False)
ssdiff = np.sum((mu1 - mu2)**2.0)
sqrt_sigma1 = matrix_sqrt(sigma1)
sqrt_sigma2 = matrix_sqrt(sigma2)
covmean = sqrt_sigma1 @ sqrt_sigma2
fid = ssdiff + np.trace(sigma1 + sigma2 - 2.0*covmean)
fid = fid.real
return fid
def load_pretrained_model(model, path, map_location='cpu'):
model_CKPT = torch.load(os.path.join(path, "pytorch_model.bin"), map_location=map_location)
model.load_state_dict(model_CKPT, strict=False)
return model
def build_vae(input_dim=1993, latent_dim=128, layer_num=5, start_hidden_dim=128, parameters_len=13):
hidden_dims = [start_hidden_dim * (2 ** i) for i in range(layer_num)]
vae = VAE(input_dim=input_dim, latent_dim=latent_dim, parameters_len=parameters_len,hidden_dims=hidden_dims)
return vae
def build_markuplm(path):
config = MarkupLMConfig.from_pretrained(path)
model = MarkupLMModel(config)
return load_pretrained_model(model, path)
def build_fid_web_model(vae, xpath_layer):
backbone = FIDBackbone(
in_dim=128,
out_dim=2,
embed_dim=128,
depth=4,
chrlen_dim=128,
xpath_dim=1024,
num_element_tokens=512
)
model = FIDWebModel(
backbone,
max_chrlen=512,
chrlen_dim=128,
vae=copy.deepcopy(vae),
xpath_layer=copy.deepcopy(xpath_layer)
)
return model
class MyDataset(Dataset):
def __init__(self, pt_dir):
self.pt_dir = pt_dir
self.file_lis = os.listdir(pt_dir)
def __len__(self):
return len(self.file_lis)
def __getitem__(self, idx):
file_name = self.file_lis[idx]
data = torch.load(os.path.join(self.pt_dir, file_name))
return data
def get_embeddings(disc_model, loader, fid_type="overall", pad_value=1992):
gt_act = []
pred_act = []
pred_logist = []
for batch in tqdm(loader):
# Unpack data
batch_size = batch["element_mask"].shape[0]
element_mask = batch["element_mask"].to(disc_model.device)
all_xpath_tags_seq = batch["all_xpath_tags_seq"].to(disc_model.device)
all_xpath_subs_seq = batch["all_xpath_subs_seq"].to(disc_model.device)
chrlen = batch["chrlen"].to(disc_model.device)
param = batch["pred"].to(disc_model.device)
if fid_type == "layout":
param[:,:,4:] = pad_value
if fid_type == "style":
param[:,:,:4] = pad_value
perturb = torch.ones(batch_size).to(disc_model.device)
# Prediction Embed
with torch.no_grad():
pred_embed = disc_model(param=param, perturb=perturb, all_xpath_tags_seq=all_xpath_tags_seq,
all_xpath_subs_seq=all_xpath_subs_seq, chrlen=chrlen, element_mask=element_mask)
pred_act.append(pred_embed["hidden_state"])
pred_logist.append(pred_embed["output"])
# Ground Truth Embed
param = batch["gt"].to(disc_model.device)
if fid_type == "layout":
param[:,:,4:] = pad_value
if fid_type == "style":
param[:,:,:4] = pad_value
perturb = torch.zeros(batch_size).to(disc_model.device)
with torch.no_grad():
gt_embed = disc_model(param=param, perturb=perturb, all_xpath_tags_seq=all_xpath_tags_seq,
all_xpath_subs_seq=all_xpath_subs_seq, chrlen=chrlen, element_mask=element_mask)
gt_act.append(gt_embed["hidden_state"])
return torch.cat(gt_act, dim=0).cpu().numpy(), torch.cat(pred_act, dim=0).cpu().numpy()
def setup_fid_web_model(pretrained_vae, xpath_layer, pretrained_model_path):
disc_model = build_fid_web_model(pretrained_vae, xpath_layer)
disc_model = load_pretrained_model(disc_model, pretrained_model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
disc_model.to(device)
disc_model.eval()
return disc_model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Calculate FID.')
parser.add_argument('--pt_dir', type=str, help='Path to PT directory')
parser.add_argument('--fid_type', type=str, choices=['overall', 'style', 'layout'], help='Type of FID')
args = parser.parse_args()
print("Start calculating FID")
pt_dir = args.pt_dir
fid_type = args.fid_type
pretrained_model_path = {
"overall": "./FID_model/overall",
"style": "./FID_model/style",
"layout": "./FID_model/layout"
}
pretrained_model_path = pretrained_model_path[fid_type]
pretrained_vae = build_vae()
markuplm = build_markuplm("../css_data/markuplm-large")
xpath_layer = copy.deepcopy(markuplm.embeddings.xpath_embeddings)
dataset = MyDataset(pt_dir)
loader = DataLoader(dataset, batch_size=128, num_workers=8)
disc_model = setup_fid_web_model(pretrained_vae, xpath_layer, pretrained_model_path)
gt, pred = get_embeddings(disc_model,loader,fid_type)
fid = calculate_fid(gt, pred)
print(f"FID_{fid_type}: {fid}")