-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCM_config2.py
156 lines (103 loc) · 7.26 KB
/
CM_config2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import normClass as nc
import agentClass as ac
import bargainClass as bc
import runtimeFunctions as rf
import itertools
import time
from collections import OrderedDict
import numpy as np
import pandas as pd
# Notes: = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = ==
# This is the "moderate preferences" condition setup for the unitary household model (UM)
# = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == = == =
# AGENT SECTION ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====
def generateAgents(ID, hhID, preference, conformity, initialTheta, totalTime):
resources = [totalTime]
nonInputResources = [0]*len(nonInputTypes)
normWeights = rf.generateNormWeights(conformity, False)
typeWeights = [preference, 1 - preference]
initialInputVector1 = [0.8, 0.2]
initialInputVector2 = [0.2, 0.8]
spousalThreshold = None
initialTransfer = initialTheta
leisureWeight = None
alpha = None
activityParams1 = OrderedDict([("privateActivity1_wage", initialBobPrice)])
activityParams2 = OrderedDict([("privateActivity1_wage", initialAlicePrice)])
agentType = None
agent1 = ac.Agent(ID, hhID, agentType, resources, nonInputResources, typeWeights, normWeights, initialInputVector1, initialTransfer, activityParams1, spousalThreshold, alpha)
agent2 = ac.Agent(ID + 1, hhID, agentType, resources, nonInputResources, typeWeights, normWeights, initialInputVector2, initialTransfer, activityParams2, spousalThreshold, alpha)
return [agent1, agent2]
def changeAgentWage(agents, newWageBob, newWageAlice):
for agent in agents:
if agent.ID % 2 == 0:
agent.activityParams["privateActivity1_wage"] = newWageBob
else:
agent.activityParams["privateActivity1_wage"] = newWageAlice
def changeLocalPrice(agents, newPriceAlice):
for agent in agents:
if agent.ID % 2 == 1:
agent.activityParams["privateActivity1_wage"] = newPriceAlice
def changeLocalPriceBins(agents, binPrices, activityIndex):
for agent in agents:
if agent.ID % 2 == 1:
# Find your bin
activityTimeIndex = (activityIndex*len(inputTypes)) + inputTypes.index("time")
binIndex = np.digitize(agent.inputVector[activityTimeIndex], bins)
binPrice = binPrices[binIndex]
agent.activityParams["privateActivity1_wage"] = binPrice
# POPULATION SECTION ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====
def generatePopulationsAndNorms(agentNumber):
agents = []
alicePop = []
bobPop = []
preferencesFile = pd.read_csv("moderatePreferences.csv")
conformityFile = pd.read_csv("moderateConformity.csv")
i = 0
for agentIndex in range(0, agentNumber, 2):
# For random moderate preferences and conformity, it doesn't matter if you snag male or female, so just take the first n of either and assign it to a household.
ba = generateAgents(agentIndex, agentIndex, preferencesFile["male"][i], conformityFile["male"][i], None, totalTime)
bob, alice = ba[0], ba[1]
agents = agents + [bob, alice]
bobPop = bobPop + [bob]
alicePop = alicePop + [alice]
i += 1
aliceNorm = nc.Norm("allAlices", alicePop, "euclideanDistance")
bobNorm = nc.Norm("allBobs", bobPop, "euclideanDistance")
norms = [aliceNorm, bobNorm]
return [agents, norms]
# ACTIVITY SECTION ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====
inputTypes = ["time"] # Capital, time, land. Can be used for input-transfers AND resourceVectors.
numInputs = len(inputTypes)
outputTypes = ["capital", "public good"]
nonInputTypes = [ot for ot in outputTypes if ot not in inputTypes]
# Capital, land, goods, units of services. Can either be added to existing resources OR just used for utility calculation (e.g. one unit of "massage" costs money and does not return resources, but increases the utility of an agent during the time step.)
# We can consider how to do long-term investments like education, etc. later.
# We make an unfortunate assumption that all TRANSFERS are of CAPITAL after an activity is performed -- otherwise it gets too complicated for one small little PhD student to deal with.
# We'd like to be able to have input-transfers (ex. labor) and output-transfers (ex. subsistence crops, capital)
totalTime = 10
initialBobPrice = 0.6
initialAlicePrice = 0.1
pGlobal = 0.1
a = 0.2
bins = np.arange(0,1,0.1)
# This is cash crops for Bob and gardening for Alice:
private1 = {"name": "privateActivity1", "public": False, "outputFunction": "cudevillePrivate", "inputTypes": ["time"], "outputType": "capital", "agentParams": {}, "activityParams": {}}
# This is housework:
public1 = {"name": "publicActivity", "public": True, "outputFunction": "cudevillePublic", "inputTypes": ["time"], "outputType": "public good", "agentParams": {}, "activityParams": {"a": 1}}
activities = [private1, public1]
spousalInterest = None
spousalThresholdBonus = None
alpha = None
for activity in activities:
activity["outputIndex"] = outputTypes.index(activity["outputType"])
numActivities = len(activities)
isPublic = [activity["public"] for activity in activities]
publicIndices = np.array(list(itertools.chain.from_iterable(itertools.repeat(x, numInputs) for x in isPublic)))
# RUNTIME SECTION ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====
inputStep = 2 # How many decimals for the matrix?
thetaMin, thetaMax, thetaStep = None, None, None
convergenceLoops = 10
timeSteps = 20
agentNumber = 200
# ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====