-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbert.py
286 lines (256 loc) · 11.2 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""BERT NER Inference."""
from __future__ import absolute_import, division, print_function
import numpy as np
import json
import os
import nltk
from keras.models import load_model
import torch
import torch.nn.functional as F
from nltk import word_tokenize
from pytorch_pretrained_bert.modeling import (CONFIG_NAME, WEIGHTS_NAME,
BertConfig,
BertForTokenClassification)
from pytorch_pretrained_bert.tokenization import BertTokenizer
np.random.seed(1337)
idx2tag={0: 'other/scientific',
1: 'person/artist',
2: 'person/title',
3: 'organization/sports_team',
4: 'organization/company',
5: 'other/supernatural',
6: 'other/product',
7: 'other/religion',
8: 'location/city',
9: 'other/event',
10: 'location/country',
11: 'location/geography',
12: 'other/living_thing',
13: 'person/political_figure',
14: 'other/internet',
15: 'other/award',
16: 'person/athlete',
17: 'organization/education',
18: 'other/art',
19: 'other/health',
20: 'other/body_part',
21: 'person/religious_leader',
22: 'other/language',
23: 'location/structure',
24: 'organization/political_party',
25: 'organization/military',
26: 'other/currency',
27: 'organization/music',
28: 'other/legal',
29: 'location/geograpy',
30: 'location/celestial',
31: 'other/heritage',
32: 'organization/government',
33: 'other/food',
34: 'organization/stock_exchange',
35: 'organization/transit',
36: 'other/sports_and_leisure',
37: 'person/military',
38: 'organization/sports_league',
39: 'location/transit',
40: 'person/legal',
41: 'location/park',
42: 'person/doctor',
43: 'person/coach'}
class BertNer(BertForTokenClassification):
def forward(self, input_ids, token_type_ids=None, attention_mask=None, valid_ids=None):
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
batch_size,max_len,feat_dim = sequence_output.shape
valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32)
for i in range(batch_size):
jj = -1
for j in range(max_len):
if valid_ids[i][j].item() == 1:
jj += 1
valid_output[i][jj] = sequence_output[i][j]
sequence_output = self.dropout(valid_output)
logits = self.classifier(sequence_output)
return logits
class Ner:
def __init__(self,model_dir: str):
self.model , self.tokenizer, self.model_config = self.load_model(model_dir)
self.label_map = self.model_config["label_map"]
self.max_seq_length = self.model_config["max_seq_length"]
self.label_map = {int(k):v for k,v in self.label_map.items()}
self.model.eval()
def load_model(self, model_dir: str, model_config: str = "model_config.json"):
model_config = os.path.join(model_dir,model_config)
model_config = json.load(open(model_config))
output_config_file = os.path.join(model_dir, CONFIG_NAME)
output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
config = BertConfig(output_config_file)
model = BertNer(config, num_labels=model_config["num_labels"])
model.load_state_dict(torch.load(output_model_file))
tokenizer = BertTokenizer.from_pretrained(model_config["bert_model"],do_lower_case=False)
return model, tokenizer, model_config
def tokenize(self, text: str):
""" tokenize input"""
words = text.split()
#print(words)
tokens = []
valid_positions = []
for i,word in enumerate(words):
token = self.tokenizer.tokenize(word)
tokens.extend(token)
for i in range(len(token)):
if i == 0:
valid_positions.append(1)
else:
valid_positions.append(0)
return tokens, valid_positions
def preprocess(self, text: str):
""" preprocess """
tokens, valid_positions = self.tokenize(text)
## insert "[CLS]"
tokens.insert(0,"[CLS]")
valid_positions.insert(0,1)
## insert "[SEP]"
tokens.append("[SEP]")
valid_positions.append(1)
segment_ids = []
for i in range(len(tokens)):
segment_ids.append(0)
input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < self.max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
valid_positions.append(0)
return input_ids,input_mask,segment_ids,valid_positions,tokens
#added function
def get_bert_embedding(self, textlist,tags,file_name,model_dir='out/',model_config="model_config.json"):
model_config = os.path.join(model_dir,model_config)
model_config = json.load(open(model_config))
output_config_file = os.path.join(model_dir, CONFIG_NAME)
output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
config = BertConfig(output_config_file)
model = BertNer(config, num_labels=model_config["num_labels"])
dict_embeddings={}
#token2tag={}
n_txt=0
for text in textlist:
#print(n_txt)
_,logits=self.predict(text)
# print(log#its.size())
if n_txt%1000==0:
print('{}/{}'.format(n_txt,len(textlist)))
input_ids,input_mask,segment_ids,valid_ids,tokens = self.preprocess(text)
input_ids = torch.tensor([input_ids],dtype=torch.long)
input_mask = torch.tensor([input_mask],dtype=torch.long)
segment_ids = torch.tensor([segment_ids],dtype=torch.long)
valid_ids = torch.tensor([valid_ids],dtype=torch.long)
bert_embed,_ = model.bert(input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=False)
tensor_idx=0
#print(valid_ids)
#print(tokens)
#print(tags[n_txt])
#print('boucle 2')
#print(valid_ids)
for i in range(len(tokens)):
#print(tensor_idx-1)
if (valid_ids[0][i]!=0) and (tokens[i]!='[CLS]') and (tokens[i]!='[SEP]'):
tensor_idx+=1
#print(tensor_idx-1)
#print(tokens[i])
l_tag=tags[n_txt][tensor_idx-1].split("/")
if len(l_tag)>2:
tag=l_tag[1]+'/'+l_tag[2]
if (tag in dict_embeddings):
#token2embedding[tokens[i]]=average2list(bert_embed[0,tensor_idx,:].tolist(),token2embedding[tokens[i]])
#print('if\n'+tags[n_txt][tensor_idx-1])
#if tags[n_txt][tensor_idx-1] not in token2tag[tokens[i]]:
# token2tag[tokens[i]].append(tags[n_txt][tensor_idx-1])
dict_embeddings[tag].append(bert_embed[0,tensor_idx,:].tolist()+logits[0,tensor_idx,1:9].tolist())
#dict_embeddings[tags[n_txt][tensor_idx-1]].append(bert_embed[0,tensor_idx,:].tolist())
elif (tag not in dict_embeddings):
#token2embedding[tokens[i]]=bert_embed[0,tensor_idx,:].tolist()
#print('else\n'+tags[n_txt][tensor_idx-1])
#token2tag[tokens[i]]=[tags[n_txt][tensor_idx-1]]
dict_embeddings[tag]=[bert_embed[0,tensor_idx,:].tolist()+logits[0,tensor_idx,1:9].tolist()]
n_txt+=1
with open(file_name, 'w') as f:
json.dump(dict_embeddings, f)
return dict_embeddings
def predict(self, text: str,ok=False):
input_ids,input_mask,segment_ids,valid_ids,tokens = self.preprocess(text)
input_ids = torch.tensor([input_ids],dtype=torch.long)
input_mask = torch.tensor([input_mask],dtype=torch.long)
segment_ids = torch.tensor([segment_ids],dtype=torch.long)
valid_ids = torch.tensor([valid_ids],dtype=torch.long)
model_dir='out/'
model_config="model_config.json"
model_config = os.path.join(model_dir,model_config)
model_config = json.load(open(model_config))
output_config_file = os.path.join(model_dir, CONFIG_NAME)
output_model_file = os.path.join(model_dir, WEIGHTS_NAME)
config = BertConfig(output_config_file)
model = BertNer(config, num_labels=model_config["num_labels"])
bert_embed,_ = model.bert(input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=False)
#print(tokens)
#print(valid_ids)
#print(input_ids)
#print(input_mask)
with torch.no_grad():
logit = self.model(input_ids, segment_ids, input_mask,valid_ids)
logits = F.softmax(logit,dim=2)
logits_label = torch.argmax(logits,dim=2)
logits_label = logits_label.detach().cpu().numpy().tolist()[0]
#print(logits_label)
# import ipdb; ipdb.set_trace()
logits_confidence = [values[label].item() for values,label in zip(logits[0],logits_label)]
logits = []
pos = 0
for index,mask in enumerate(valid_ids[0]):
if index == 0:
continue
if mask == 1:
logits.append((logits_label[index-pos],logits_confidence[index-pos]))
else:
pos += 1
logits.pop()
#print(logits)
labels = [(self.label_map[label],confidence) for label,confidence in logits]
#print(labels)
tags = [self.label_map[label] for label,_ in logits]
words = text.split()
#print(tags)
if ok :
classifier=load_model("classifier.h5")
tensor_idx=0
n_count=0
embedding=[]
for i in range(len(tokens)):
if (valid_ids[0][i]!=0) and (tokens[i]!='[CLS]') and (tokens[i]!='[SEP]'):
tensor_idx+=1
if tags[tensor_idx-1]!='O':
n_count+=1
if n_count==1:
embedding=[bert_embed[0,tensor_idx,:].tolist()+logit[0,tensor_idx,1:9].tolist()]
else:
embedding.append(bert_embed[0,tensor_idx,:].tolist()+logit[0,tensor_idx,1:9].tolist())
# print(len(embedding))
#classifier predictions
embedding = np.array(embedding).reshape(-1,776,1)
predictions = classifier.predict(embedding)
y_pred=[np.argmax(predictions[i]) for i in range(len(embedding))]
y_pred=[idx2tag[i] for i in y_pred]
tags1 = [self.label_map[label] for label,_ in logits]
j=0
for i in range(len(tags)):
if tags[i]!='O' and tags[i][0]!='I':
tags[i]="B-"+y_pred[j]
j+=1
elif tags[i][0]=='I':
tags[i]="I-"+tags[i-1][2:]
j+=1
assert len(labels) == len(words)
if ok==True:
print("bert output :\n{}".format(tags1))
output = [(word,{"tag":label}) for word,label in zip(words,tags)]
return output, logit