Skip to content

Latest commit

 

History

History
70 lines (53 loc) · 2.72 KB

DETECTION.md

File metadata and controls

70 lines (53 loc) · 2.72 KB

ConvMAE: Masked Convolution Meets Masked Autoencoders

This folder contains the implementation of the ConvMAE transfer learning for object detection on COCO.

Pipeline

tenser

Model Zoo

Models Pretrain Pretrain Epochs Finetune Epochs #Params(M) FLOPs(T) box AP mask AP logs/weights
ConvMAE-B IN1K w/o lables 1600 25 104 0.9 53.2 47.1 log/weight

Usage

Install

  • Clone this repo:
git clone https://github.com/Alpha-VL/ConvMAE
cd ConvMAE/DET
  • Create a conda environment and activate it:
conda create -n mimdet python=3.9
conda activate mimdet

Data preparation

You can download the COCO-2017 here and prepare the COCO follow this format:

├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017

It is suggested to link the data path as:

export DETECTRON2_DATASETS=/path/to/data

Evaluation

Download the finetuned model here.

# inference
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> --eval-only train.init_checkpoint=<MODEL_PATH>

Training

Download the pretrained ConvMAE model here.

# single-machine training
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> model.backbone.bottom_up.pretrained=<PRETRAINED_MODEL_PATH>

# multi-machine training
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> --num-machines <MACHINE_NUM> --master_addr <MASTER_ADDR> --master_port <MASTER_PORT> model.backbone.bottom_up.pretrained=<PRETRAINED_MODEL_PATH>