-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubset_db.py
311 lines (289 loc) · 11.9 KB
/
subset_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import numpy as np
import pandas as pd
import sqlite3
import sqlalchemy as sqlac
import sqlalchemy.types as sqlacts
import typing
def load_table_df(conn, table_name):
return pd.read_sql("SELECT * from '{}'".format(table_name), conn)
class DBSubsetBuilder:
def __init__(self, src_db: str, dst_db, genome_lst: typing.List[str]) -> None:
self.src_engine = sqlac.create_engine("sqlite:///" + src_db)
self.src_conn = self.src_engine.connect()
self.dst_engine = sqlac.create_engine("sqlite:///" + dst_db)
self.dst_conn = self.dst_engine.connect()
self.genomes = genome_lst
self.genome_ids = {gx: ix for ix, gx in enumerate(genome_lst)}
self.tetras_dtypes = {"tetramer": sqlacts.INTEGER, "genomes": sqlacts.BLOB}
self.genomes_dtypes = {"genome_id": sqlacts.INTEGER, "tetramers": sqlacts.BLOB}
self.meta_dypes = {
"genome_name": sqlacts.TEXT,
"genome_id": sqlacts.INTEGER,
"genome_length": sqlacts.INTEGER,
"genome_class": sqlacts.INTEGER,
"SCP_count": sqlacts.INTEGER,
}
self.scp_dtypes = {
"genome_id": sqlacts.INTEGER,
"SCP_acc": sqlacts.TEXT,
"SCP_score": sqlacts.REAL,
"tetra_count": sqlacts.INTEGER,
}
self.get_metadata()
# generate ids for the subset genes starting with 0
# Step 0: Acquire data
# 1. Get protein names, genome names
# 2. Current ids for the genomes
# 3. r_genome_ids : Genome ids of the genomes need to be removed
def get_metadata(self):
self.tab_names = pd.read_sql(
"SELECT name FROM sqlite_schema WHERE type='table'", self.src_conn
)
self.protein_df = pd.read_sql("SELECT scp_acc from 'scp_data'",
self.src_conn)
self.protien_names = set(self.protein_df["SCP_acc"].tolist())
print("No. of Proteins : ", len(self.protien_names))
#
self.genome_rdf = pd.read_sql("SELECT * from genome_metadata",
self.src_conn)
self.scp_df = pd.read_sql("SELECT * from scp_data", self.src_conn)
#
self.gselect_df = self.genome_rdf[
self.genome_rdf["genome_name"].isin(set(self.genomes)) # type: ignore
]
self.gremove_df = self.genome_rdf[
self.genome_rdf["genome_name"].isin(set(self.genomes)) == False # type: ignore
]
#
self.select_ids = self.gselect_df["genome_id"].tolist()
grecords = self.gselect_df[["genome_name", "genome_id"]].to_dict( # type:ignore
"records"
)
self.c2s_map = {}
for rcd in grecords:
gname = rcd["genome_name"]
gid = rcd["genome_id"]
self.c2s_map[gid] = self.genome_ids[gname]
self.rgenomes_str = ",".join(str(rx) for rx in self.gremove_df["genome_id"])
# Step 1: Update _tetras
# for each ${protien_id}_tetras table
# - Remove the rows with r_genome_ids
# - Update the existing with the
#
def subset_tetras_df(self, tetras_df, ids_select, ids_map):
def filter_ids(row_nx):
return np.extract(np.isin(row_nx, ids_select), row_nx)
def map_to_ids(row_nx):
return np.array(
sorted([ids_map[y] for y in row_nx if y in ids_map]),
dtype=np.int32
)
#
tetras_df["genomes"] = (
tetras_df["genomes"]
.apply(np.frombuffer, dtype=np.int32)
.apply(filter_ids)
.apply(map_to_ids)
.apply(lambda x: x.tobytes())
)
tetras_df = tetras_df[tetras_df["genomes"] != b""]
tetras_df.reset_index(drop=True)
return tetras_df
def create_tetras_table(self, table_name, tetras_df):
# drop_stmt = "DROP TABLE '{}'".format(table_name)
create_stmt = "CREATE TABLE IF NOT EXISTS '{}' (tetramer INTEGER PRIMARY KEY, genomes BLOB)".format(
table_name
)
idx_stmt = "CREATE INDEX `{}_index` ON `{}` (tetramer)".format(
table_name, table_name
)
self.dst_conn.execute(sqlac.text(create_stmt))
tetras_df.to_sql(
table_name,
self.dst_conn,
index=False,
# index_label="tetramer",
if_exists="append",
dtype=self.tetras_dtypes, # type:ignore
)
self.dst_conn.execute(sqlac.text(idx_stmt))
self.dst_conn.commit()
def subset_tetras_table(self, table_name):
tetras_df = pd.read_sql("SELECT * from '{}'".format(table_name),
self.src_conn)
tetras_df = self.subset_tetras_df(tetras_df, self.select_ids,
self.c2s_map)
self.create_tetras_table(table_name, tetras_df)
# Step 2: Update genomes table
# 1. Delete the genomes with ids to be removed
# 2. Update the table with new genome ids
def create_genomes_table(self, table_name, genomes_df):
# delete_stmt = "DELETE FROM '{}' where genome_id in ({})".format(
# table_name, self.rgenomes_str
# )
# self.src_conn.execute(sqlac.text(drop_stmt))
# self.src_conn.commit()
# update_stmt = "UPDATE '{}' SET genome_id = {} WHERE genome_id == {}"
# drop_stmt = "DROP TABLE '{}'".format(table_name)
create_stmt = "CREATE TABLE IF NOT EXISTS '{}' (genome_id INTEGER PRIMARY KEY, tetramers BLOB)".format(
table_name
)
self.dst_conn.execute(sqlac.text(create_stmt))
genomes_df.to_sql(
table_name,
self.dst_conn,
index=False,
# index_label="genome_id",
if_exists="append",
dtype=self.genomes_dtypes, # type:ignore
)
self.dst_conn.commit()
# self.conn.execute(sqlac.text(delete_stmt))
# self.conn.commit()
# for rx, ux in sorted(self.c2s_map.items()):
# print("UPD: ", rx, ux)
# self.conn.execute(
# sqlac.text(update_stmt.format(table_name, str(rx), str(ux)))
# )
# self.conn.commit()
# self.conn.commit()
def subset_genomes_table(self, table_name):
select_stmt = "SELECT * FROM '{}'".format(table_name)
genomes_df = pd.read_sql(select_stmt, self.src_conn)
genomes_df = genomes_df[genomes_df["genome_id"].isin(self.select_ids)]
genomes_df["genome_id"] = genomes_df["genome_id"].map( # type:ignore
self.c2s_map # type:ignore
)
genomes_df = genomes_df.reset_index(drop=True)
self.create_genomes_table(table_name, genomes_df)
#
# Step 3: Update scp_data table
def create_scp_data(self):
uscp_df = self.scp_df[self.scp_df["genome_id"].isin(self.select_ids)].copy()
uscp_df["genome_id"] = uscp_df["genome_id"].map( # type:ignore
self.c2s_map # type:ignore
)
uscp_df.reset_index(drop=True)
# print(self.scp_df.shape, uscp_df.shape)
# drop_stmt = "DROP TABLE '{}'".format("scp_data")
# self.src_conn.execute(sqlac.text(drop_stmt))
# self.src_conn.commit()
create_stmt = "CREATE TABLE IF NOT EXISTS 'scp_data' (genome_id INTEGER, SCP_acc TEXT, SCP_score REAL, tetra_count INTEGER)"
self.dst_conn.execute(sqlac.text(create_stmt))
uscp_df.to_sql(
"scp_data",
self.dst_conn,
index=False,
# index_label="genome_id",
if_exists="append",
dtype=self.scp_dtypes, # type:ignore
)
self.dst_conn.commit()
# Step 4: Update genome_metadata table
def create_genome_meta_data(self):
ugenomes_df = self.genome_rdf[
self.genome_rdf["genome_id"].isin(self.select_ids)
].copy()
ugenomes_df["genome_id"] = ugenomes_df["genome_id"].map( # type:ignore
self.c2s_map # type:ignore
)
ugenomes_df = ugenomes_df.reset_index(drop=True)
print(ugenomes_df)
# drop_stmt = "DROP TABLE '{}'".format("genome_metadata")
# self.src_conn.execute(sqlac.text(drop_stmt))
# self.src_conn.commit()
create_stmt = "CREATE TABLE IF NOT EXISTS 'genome_metadata' (genome_name TEXT, genome_id INTEGER PRIMARY KEY, genome_length INTEGER, genome_class INTEGER, SCP_count INTEGER);"
self.dst_conn.execute(sqlac.text(create_stmt))
self.dst_conn.commit()
ugenomes_df.to_sql(
"genome_metadata",
self.dst_conn,
index=False,
# index_label="genome_id",
if_exists="append",
dtype=self.meta_dypes, # type:ignore
)
self.dst_conn.commit()
def create_prtein_indices(self):
idxp_cstmt = """CREATE TABLE index_protein (
protein_number INTEGER PRIMARY KEY,
protein_string VARCHAR(255) NOT NULL
)"""
protix_cstmt = """CREATE TABLE protein_index (
protein_string VARCHAR(255) NOT NULL PRIMARY KEY,
protein_number INTEGER
)"""
idxp_df = pd.read_sql("SELECT * FROM 'index_protein'", self.src_conn)
protix_df = pd.read_sql("SELECT * FROM 'protein_index'", self.src_conn)
self.dst_conn.execute(sqlac.text(idxp_cstmt))
idxp_df.to_sql(
"index_protein",
self.dst_conn,
index=False,
# index_label="genome_id",
if_exists="append",
dtype={
"protein_number": sqlacts.INTEGER,
"protein_string": sqlacts.VARCHAR,
}, # type:ignore
)
self.dst_conn.commit()
#
self.dst_conn.execute(sqlac.text(protix_cstmt))
protix_df.to_sql(
"protein_index",
self.dst_conn,
index=False,
# index_label="genome_id",
if_exists="append",
dtype={
"protein_string": sqlacts.VARCHAR,
"protein_number": sqlacts.INTEGER,
},
)
self.dst_conn.commit()
def run(self):
self.create_genome_meta_data()
self.create_scp_data()
self.create_prtein_indices()
for ix, px in enumerate(self.protien_names):
print("Processing : ", ix, px)
self.subset_tetras_table(px + "_tetras")
self.subset_genomes_table(px + "_genomes")
def close(self):
self.src_conn.close()
self.dst_conn.close()
def gen_subset_db(src_db, subset_db, subset):
dsub = DBSubsetBuilder(src_db, subset_db, subset)
dsub.run()
dsub.close()
source_db = "./modified_xantho_fastaai2.db"
rsubset1_loc = "./xdb_subset1.db"
rsubset1 = [
"Xanthomonas_albilineans_GCA_000962915_1.fna.gz",
"Xanthomonas_albilineans_GCA_000962945_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963065_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963195_1.fna.gz",
]
rsubset2_loc = "./xdb_subset2.db"
rsubset2 = [
"Xanthomonas_albilineans_GCA_000962925_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963025_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963155_1.fna.gz",
"_Pseudomonas__cissicola_GCA_008801575_1.fna.gz",
]
rsubset12_loc = "./xdb_subset_combo12.db"
rsubset12 = [
"Xanthomonas_albilineans_GCA_000962915_1.fna.gz",
"Xanthomonas_albilineans_GCA_000962945_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963065_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963195_1.fna.gz",
"Xanthomonas_albilineans_GCA_000962925_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963025_1.fna.gz",
"Xanthomonas_albilineans_GCA_000963155_1.fna.gz",
"_Pseudomonas__cissicola_GCA_008801575_1.fna.gz",
]
if __name__ == "__main__":
gen_subset_db(source_db, rsubset1_loc, rsubset1)
gen_subset_db(source_db, rsubset2_loc, rsubset2)
gen_subset_db(source_db, rsubset12_loc, rsubset12)