-
Notifications
You must be signed in to change notification settings - Fork 37
/
adx_crossover.py
103 lines (76 loc) · 3.96 KB
/
adx_crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 27 09:29:36 2020
@author: mingyu
"""
import pandas as pd
import ta
#import talib as ta
import trading_strategies.visualise as v
class AdxCrossover:
def __init__(self, file_path):
#self.df = pd.read_csv(file_path)
self.df = pd.DataFrame(file_path, columns=("time", "open", "high", "low", "close", "tick_volume","pos"))
self.high = self.df['high']
self.low = self.df['low']
self.close = self.df['close']
def calculate_adx(self):
self.df['adx'] = ta.trend.ADXIndicator(high = self.high, low = self.low, close = self.close, window = 20).adx()
def calculate_minus_DI(self):
self.df['-di'] = ta.trend.ADXIndicator(high = self.high, low = self.low, close = self.close, window = 20).adx_neg()
def calculate_plus_DI(self):
self.df['+di'] = ta.trend.ADXIndicator(high = self.high, low = self.low, close = self.close, window = 20).adx_pos()
def determine_signal(self, dframe):
# initialise signal to hold: 0
signal = 0
# BUY SIGNAL: adx is above 25 and the positive DI crosses over negative DI indicates a strong uptrend
if dframe['adx'].iloc[-1] > 25 and dframe['+di'].iloc[-1] > dframe['-di'].iloc[-1] and dframe['+di'].iloc[-2] <= dframe['-di'].iloc[-2]:
signal = 1
# SELL SIGNAL: adx is above 25 and the negative DI crosses over positive DI indicates a strong downtrend
elif dframe['adx'].iloc[-1] > 25 and dframe['+di'].iloc[-1] < dframe['-di'].iloc[-1] and dframe['+di'].iloc[-2] >= dframe['-di'].iloc[-2]:
signal = -1
return (signal, dframe['close'].iloc[-1])
def run(self):
self.calculate_adx()
self.calculate_minus_DI()
self.calculate_plus_DI()
signal = self.determine_signal(self.df)
return signal, self.df
''' The following methods are for plotting '''
def find_all_signals(self, plot_df):
# assign intitial value of hold
plot_df['signal'] = 0
start = -1 * len(
plot_df) # using negative indices just in case you are using a subset of input data where index does not start at index 0
end = start + 40 # where the current window will stop (exclusive of the element at this index)
# loop through data to determine all signals
while end < 0:
curr_window = plot_df[start:end]
action = self.determine_signal(curr_window)[0]
plot_df.loc[plot_df.index[end - 1], 'signal'] = action
additional_info = self.determine_signal(curr_window)[1]
plot_df.loc[plot_df.index[end - 1], 'additional_info'] = additional_info
end += 1
start += 1
# compute final signal
plot_df.loc[plot_df.index[-1], 'signal'] = self.determine_signal(plot_df[-40:])[0]
def plot_graph(self):
# deep copy of data so original is not impacted
plot_df = self.df.copy(deep=True)
# determine all signals for the dataset
self.find_all_signals(plot_df)
plot_df['zero_line'] = 0
plot_df['25_line'] = 25
# initialise visualisation object for plotting
visualisation = v.Visualise(plot_df)
# determining one buy signal example for plotting
visualisation.determine_buy_marker()
# determining one sell signal example for plotting
visualisation.determine_sell_marker()
# add subplots of senkou span A and B to form the ichimoku cloud, and the parabolic sar dots
visualisation.add_subplot(plot_df['adx'], panel=1, color='blue', width=0.75, ylabel='ADX')
visualisation.add_subplot(plot_df['25_line'], panel=1, color='k', secondary_y=False, width=0.75, linestyle='solid')
visualisation.add_subplot(plot_df['+di'], panel=1, color='green', width=0.75)
visualisation.add_subplot(plot_df['-di'], panel=1, color='red', width=0.75)
# create final plot with title
visualisation.plot_graph("ADX Crossover Strategy")