-
Notifications
You must be signed in to change notification settings - Fork 38
/
cci_moving_average.py
112 lines (84 loc) · 4.5 KB
/
cci_moving_average.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# -*- coding: utf-8 -*-
"""
@author: mingyu and caitlin
This strategy combines the CCI, the commodity channel index with a simple moving average for 100 periods.
The CCI is a trend indicator that shows oversold and overbought conditions. Combine with the sma100
to attempt to filter some false signals.
"""
import datetime
import pandas as pd
import ta
import trading_strategies.visualise as v
class CciMovingAverage:
# loading the data in from file_path
def __init__(self, file_path):
self.df = pd.read_csv(file_path)
self.high = self.df['high']
self.low = self.df['low']
self.close = self.df['close']
# calculates the cci
def calculate_cci(self):
self.df['cci'] = ta.trend.CCIIndicator(high=self.high, low=self.low, close=self.close).cci()
# calculates the period 100 moving average
def calculate_moving_average(self):
self.df['average'] = (self.df['high'] + self.df['low'] + self.df['close']) / 3
self.df['period_100_average'] = self.df['average'].rolling(window=100).mean()
# Runs the commodity channel index with moving average strategy
def determine_signal(self, dframe):
# initialise all signals to hold: 0
signal = 0
# A buy entry signal is when cci left oversold zone, i.e. just above -100, and price intersects the period 100 moving average from below
if dframe['cci'].iloc[-1] > -100 and dframe['cci'].iloc[-2] <= -100 and dframe['close'].iloc[-1] > dframe['period_100_average'].iloc[-1] and dframe['close'].iloc[-2] <= dframe['period_100_average'].iloc[-2]:
signal = 1
# A sell entry signal is when cci left overbought zone, i.e. just below 100, and price intersects the period 100 moving average from above
elif dframe['cci'].iloc[-1] < 100 and dframe['cci'].iloc[-2] >= 100 and dframe['close'].iloc[-1] < dframe['period_100_average'].iloc[-1] and dframe['close'].iloc[-2] >= dframe['period_100_average'].iloc[-2]:
signal = -1
return (signal, dframe['period_100_average'].iloc[-1])
def run(self):
self.calculate_cci()
self.calculate_moving_average()
signal = self.determine_signal(self.df)
return signal, self.df
'''
the following methods are for plotting
'''
def find_all_signals(self, plot_df):
# assign intitial value of hold
plot_df['signal'] = 0
start = -1 * len(
plot_df) # using negative indices just in case you are using a subset of input data where index does not start at index 0
end = start + 101 # where the current window will stop (exclusive of the element at this index)
# loop through data to determine all signals
while end < 0:
curr_window = plot_df[start:end]
action = self.determine_signal(curr_window)[0]
plot_df.loc[plot_df.index[end - 1], 'signal'] = action
additional_info = self.determine_signal(curr_window)[1]
plot_df.loc[plot_df.index[end - 1], 'additional_info'] = additional_info
end += 1
start += 1
# compute final signal
plot_df.loc[plot_df.index[-1], 'signal'] = self.determine_signal(plot_df[-101:])[0]
def plot_graph(self):
# deep copy of data so original is not impacted
plot_df = self.df.copy(deep=True)
# determine all signals for the dataset
self.find_all_signals(plot_df)
plot_df['zero_line'] = 0
plot_df['100_line'] = 100
plot_df['-100_line'] = -100
# initialise visualisation object for plotting
visualisation = v.Visualise(plot_df)
# determining one buy signal example for plotting
visualisation.determine_buy_marker()
# determining one sell signal example for plotting
visualisation.determine_sell_marker()
# add subplots of senkou span A and B to form the ichimoku cloud, and the parabolic sar dots
visualisation.add_subplot(plot_df['period_100_average'], color='red', width=1, ylabel='period100ma')
visualisation.add_subplot(plot_df['cci'], panel=1, color='b', width=0.75, ylabel='CCI')
visualisation.add_subplot(plot_df['100_line'], panel=1, color='k', secondary_y=False, width=0.75,
linestyle='solid')
visualisation.add_subplot(plot_df['-100_line'], panel=1, color='k', secondary_y=False, width=0.75,
linestyle='solid')
# create final plot with title
visualisation.plot_graph("CCI MA Strategy")