-
Notifications
You must be signed in to change notification settings - Fork 37
/
kama_crossover.py
93 lines (65 loc) · 3.33 KB
/
kama_crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import pandas as pd
import ta
import trading_strategies.visualise as v
# Source: https://corporatefinanceinstitute.com/resources/knowledge/trading-investing/kaufmans-adaptive-moving-average-kama/
class KAMACrossover:
def __init__(self, file_path):
#self.df = pd.DataFrame(file_path)
self.df = pd.read_csv(file_path)
def add_kama_fast(self):
self.df['kama_fast'] = ta.momentum.KAMAIndicator(close = self.df['close'], n = 10, pow1 = 2, pow2 = 30).kama()
def add_kama_slow(self):
self.df['kama_slow'] = ta.momentum.KAMAIndicator(close = self.df['close'], n = 10, pow1 = 5, pow2 = 30).kama()
# determine and signal for particular index
def determine_signal(self, dframe):
signal = 0
# BUY if Kama fast crosses above kama slow
if dframe['kama_fast'].iloc[-1] > dframe['kama_slow'].iloc[-1] and dframe['kama_fast'].iloc[-2] <= dframe['kama_slow'].iloc[-2]:
signal = 1
# SELL if Kama fast crosses below kama slow
elif dframe['kama_fast'].iloc[-1] < dframe['kama_slow'].iloc[-1] and dframe['kama_fast'].iloc[-2] >= dframe['kama_slow'].iloc[-2]:
signal = -1
return (signal, dframe['close'].iloc[-1]- dframe['kama_fast'].iloc[-1])
def run(self):
self.add_kama_fast()
self.add_kama_slow()
signal = self.determine_signal(self.df)
return signal, self.df
'''
The following methods are for plotting.
'''
def find_all_signals(self, plot_df):
# assign intitial value of hold
plot_df['signal'] = 0
start = -1 * len(
plot_df) # using negative indices just in case you are using a subset of input data where index does not start at index 0
end = start + 31 # where the current window will stop (exclusive of the element at this index)
# loop through data to determine all signals
while end < 0:
curr_window = plot_df[start:end]
action = self.determine_signal(curr_window)[0]
plot_df.loc[plot_df.index[end - 1], 'signal'] = action
additional_info = self.determine_signal(curr_window)[1]
plot_df.loc[plot_df.index[end - 1], 'additional_info'] = additional_info
end += 1
start += 1
# compute final signal
plot_df.loc[plot_df.index[-1], 'signal'] = self.determine_signal(plot_df[-31:])[0]
def plot_graph(self):
# deep copy of data so original is not impacted
plot_df = self.df.copy(deep=True)
# determine all signals for the dataset
self.find_all_signals(plot_df)
# zero line series for horizontal axis at value 0 in bull power and bear power
plot_df['zero_line'] = 0
# initialise visualisation object for plotting
visualisation = v.Visualise(plot_df)
# determining one buy signal example for plotting
visualisation.determine_buy_marker()
# determining one sell signal example for plotting
visualisation.determine_sell_marker()
# add subplots of senkou span A and B to form the ichimoku cloud, and the parabolic sar dots
visualisation.add_subplot(plot_df['kama_fast'], color="red")
visualisation.add_subplot(plot_df['kama_slow'], color="blue")
# create final plot with title
visualisation.plot_graph("KAMA Crossover Strategy")