-
Notifications
You must be signed in to change notification settings - Fork 37
/
zig_zag.py
98 lines (71 loc) · 3.04 KB
/
zig_zag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
import ta
import trading_strategies.visualise as v
'''
### Author: Wilson ###
Strategy from:
https://www.investopedia.com/terms/z/zig_zag_indicator.asp
Self-implemented.
'''
class ZigZag:
# constructor
def __init__(self, file_path):
self.df = pd.read_csv(file_path)
#self.df = pd.DataFrame(file_path)
# determine and signal for particular index
def determine_signal(self, dframe):
signal = 0
#BUY if higher highs and higher lows (against a 10 period backdrop)
if((dframe['high'].iloc[-10:-1].max() > dframe['high'].iloc[-20:-11].max()) &
(dframe['low'].iloc[-10:-1].min() > dframe['low'].iloc[-20:-11].min())):
signal = 1
#SELL if lower highers and lower lows
if((dframe['high'].iloc[-10:-1].max() < dframe['high'].iloc[-20:-11].max()) &
(dframe['low'].iloc[-10:-1].min() < dframe['low'].iloc[-20:-11].min())):
signal = -1
return signal
# determine and return additional useful information
def determine_additional_info(self, dframe):
return dframe['high'].iloc[-10:-1].max() - dframe['high'].iloc[-20:-11].max()
# run strategy
def run_zigzag(self):
# generate data for return tuple
signal = self.determine_signal(self.df)
additional_info = self.determine_additional_info(self.df)
# create return tuple and append data
result = []
result.append(signal)
result.append(additional_info)
return tuple(result), self.df
''' The following methods are for plotting '''
def find_all_signals(self, plot_df):
# assign intitial value of hold
plot_df['signal'] = 0
start = -1 * len(
plot_df) # using negative indices just in case you are using a subset of input data where index does not start at index 0
end = start + 60 # where the current window will stop (exclusive of the element at this index)
# loop through data to determine all signals
while end < 0:
curr_window = plot_df[start:end]
action = self.determine_signal(curr_window)
plot_df.loc[plot_df.index[end - 1], 'signal'] = action
end += 1
start += 1
# compute final signal
plot_df.loc[plot_df.index[-1], 'signal'] = self.determine_signal(plot_df[-60:])
def plot_graph(self):
# deep copy of data so original is not impacted
plot_df = self.df.copy(deep=True)
# determine all signals for the dataset
self.find_all_signals(plot_df)
# initialise visualisation object for plotting
visualisation = v.Visualise(plot_df)
# determining one buy signal example for plotting
visualisation.determine_buy_marker()
# determining one sell signal example for plotting
visualisation.determine_sell_marker()
# create final plot with title
visualisation.plot_graph("Zig Zag Trading Strategy")