-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtest_actionlist.py
421 lines (334 loc) · 13.7 KB
/
test_actionlist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#!/usr/bin/env python
import unittest
import pytraj as pt
import numpy as np
import pytest
from pytraj import adict, allactions
from pytraj import ArgList, Trajectory, Frame
from pytraj.testing import aa_eq
from pytraj.analysis.c_action import c_action as CA
from pytraj.datasets import DatasetList as CpptrajDatasetList
from pytraj.datafiles.datafiles import DataFileList
from pytraj import ActionList
from pytraj import Pipeline
from pytraj.testing import cpptraj_test_dir, tempfolder
from utils import fn, tc5b_trajin, tc5b_top
class TestActionList:
def test_distances(self):
traj = pt.iterload(tc5b_trajin, tc5b_top)[:]
trajin = """
parm {}
trajin {}
distance @CB @CA
distance @CA @H
""".format(fn('Tc5b.parm7'), fn('Tc5b.x'))
cout = pt.datafiles.load_cpptraj_output(trajin)[1:]
mask_list = ('@CB @CA', '@CA @H')
dslist = pt.calc_distance(traj, mask_list)
dslist3_0 = pt.calc_distance(traj, mask_list[0])
dslist3_1 = pt.calc_distance(traj, mask_list[1])
# compare to cpptraj output
aa_eq(dslist.flatten(), cout.values.flatten())
aa_eq(dslist3_0, dslist[0])
aa_eq(dslist3_1, dslist[1])
def test_run_0(self):
# load traj
farray = pt.load(
filename=fn('tz2.truncoct.nc'), top=fn("tz2.truncoct.parm7"))[:2]
farray.copy()
allactions.Action_Image()
# create 'strip' action
allactions.Action_Strip()
# creat datasetlist to hold distance data
CpptrajDatasetList()
DataFileList()
# creat ActionList to hold actions
alist = ActionList()
top = farray.top
# add two actions: Action_Strip and Action_Distance
alist.add(allactions.Action_Center(), ArgList(":2-11"), top=top)
alist.add(
allactions.Action_Image(),
ArgList("center familiar com :6"),
top=top)
# do checking
alist.setup(top)
farray2 = Trajectory()
frame0 = Frame()
# testing how fast to do the actions
# loop all frames
# use iterator to make faster loop
# don't use "for i in range(farray.n_frames)"
for frame in farray:
# perform actions for each frame
# we make a copy since we want to keep orginal Frame
frame0 = frame.copy()
alist.compute(frame0)
# we need to keep the modified frame in farray2
farray2.append(frame0)
# make sure that Action_Strip does its job in stripping
assert farray2.n_frames == farray.n_frames
fsaved = pt.iterload(cpptraj_test_dir + "/Test_Image/image4.crd.save",
fn("tz2.truncoct.parm7"))
assert fsaved.n_frames == 2
def test_run_1(self):
# load traj
traj = pt.iterload(tc5b_trajin, tc5b_top)
dslist = CpptrajDatasetList()
dflist = DataFileList()
# creat ActionList to hold actions
alist = ActionList()
# add two actions: Action_Dihedral and Action_Distance
alist.add(adict['distance'], ":2@CA :10@CA out ./output/_dist.out",
traj.top, dslist, dflist)
alist.add(adict['dihedral'],
":2@CA :3@CA :4@CA :5@CA out ./output/_dih.out", traj.top,
dslist, dflist)
# using string for action 'dssp'
alist.add('dssp', "out ./output/_dssp_alist.out", traj.top, dslist,
dflist)
alist.add('matrix', "out ./output/_mat_alist.out", traj.top, dslist,
dflist)
# does not work with `strip` (output traj have the same n_atoms as originl traj)
# turn off for now
# Error: Could not get associated topology for ./output/test_trajout.nc
# alist.compute([traj[[0, 1]], traj, traj.iterchunk(chunksize=4,
# stop=8),
# traj.iterframe()])
def test_run_2(self):
# load traj
traj = pt.iterload(tc5b_trajin, tc5b_top)
dslist = CpptrajDatasetList()
dflist = DataFileList()
# creat ActionList to hold actions
alist = ActionList()
alist.add(adict['distance'], ":2@CA :10@CA out _dist.out", traj.top,
dslist, dflist)
with tempfolder():
alist.compute([traj.iterchunk()])
assert len(dslist) == 1
assert dslist[0].size == traj.n_frames
def test_run_3(self):
dslist = CpptrajDatasetList()
actlist = ActionList()
traj = pt.iterload(tc5b_trajin, tc5b_top)
mask_list = ['@CB @CA @N', '@CA @H @N']
for mask in mask_list:
actlist.add(CA.Action_Angle(), mask, traj.top, dslist=dslist)
actlist.compute(traj)
pt.calc_angle(traj, mask_list)
dslist3_0 = pt.calc_angle(traj, mask_list[0])
dslist3_1 = pt.calc_angle(traj, mask_list[1])
aa_eq(dslist3_0, dslist[0].to_ndarray())
aa_eq(dslist3_1, dslist[1].to_ndarray())
aa_eq(dslist3_0, dslist[0].to_ndarray())
aa_eq(dslist3_1, dslist[1].to_ndarray())
def test_run_4(self):
dslist = CpptrajDatasetList()
actlist = ActionList()
traj = pt.iterload(tc5b_trajin, tc5b_top)
mask_list = ['@CB @CA @N @H', '@CA @H @N @H=']
for mask in mask_list:
actlist.add(CA.Action_Dihedral(), mask, traj.top, dslist=dslist)
actlist.compute(traj)
dslist2 = pt.calc_dihedral(traj, mask_list)
dslist3_0 = pt.calc_dihedral(traj, mask_list[0])
dslist3_1 = pt.calc_dihedral(traj, mask_list[1])
aa_eq(dslist3_0, dslist2[0])
aa_eq(dslist3_1, dslist2[1])
aa_eq(dslist3_0, dslist[0].to_ndarray())
aa_eq(dslist3_1, dslist[1].to_ndarray())
def test_run_5(self):
traj = pt.iterload(tc5b_trajin, tc5b_top)
mask_list = ('@CB @CA', '@CA @H')
dslist = CpptrajDatasetList()
actlist = ActionList()
for mask in mask_list:
actlist.add(CA.Action_Distance(), mask, traj.top, dslist=dslist)
actlist.compute(traj)
dslist2 = pt.calc_distance(traj, mask_list)
aa_eq(dslist.values, dslist2)
def test_6(self):
traj = pt.iterload(tc5b_trajin, tc5b_top)
mask_list = ('@CB @CA', '@CA @H')
dslist = pt.calc_distance(traj, mask_list)
dslist3_0 = pt.calc_distance(traj, mask_list[0])
dslist3_1 = pt.calc_distance(traj, mask_list[1])
aa_eq(dslist3_0, dslist[0])
aa_eq(dslist3_1, dslist[1])
def test_constructor_from_command_list_TrajectoryIterator(self):
traj = pt.iterload(tc5b_trajin, tc5b_top)
commands = [
'rmsd @CA', 'distance :3 :7', 'distance :3 :7', 'vector :2 :3'
]
dslist = CpptrajDatasetList()
actlist = ActionList(commands, traj.top, dslist=dslist)
d0 = dslist.add('ref_frame', 'my_ref')
d0.top = traj.top
d0.add_frame(traj[3])
for frame in traj:
actlist.compute(frame)
aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
aa_eq(
pt.vector.vector_mask(traj(rmsfit=(0, '@CA')), ':2 :3'),
dslist[3].values)
def test_constructor_from_command_list_Trajectory(self):
'''mutable Trajectory'''
# use `load` method rather `iterload`
traj = pt.load(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
# make sure no space-sensitivity
# make the code (commands) ugly is my intention.
commands = [
'autoimage ',
'autoimage',
'rmsd @CA',
'distance :3 :7',
'distance :3 :7',
'vector :2 :3',
' distance :3 :7',
'rms @C,N,O',
]
dslist = CpptrajDatasetList()
actlist = ActionList(commands, traj.top, dslist=dslist)
for frame in traj:
actlist.compute(frame)
aa_eq(pt.rmsd(traj, mask='@CA'), dslist[0])
aa_eq(pt.distance(traj, ':3 :7'), dslist[1])
aa_eq(pt.distance(traj, ':3 :7'), dslist[2])
# do not need to perform rmsfit again.
aa_eq(pt.vector.vector_mask(traj, ':2 :3'), dslist[3].values)
aa_eq(pt.distance(traj, ':3 :7'), dslist[4])
aa_eq(pt.rmsd(traj, mask='@C,N,O'), dslist[5])
def test_constructor_from_command_list_TrajectoryIterator_no_DatasetList(
self):
traj = pt.iterload(tc5b_trajin, tc5b_top)
commands = [
'rmsd @CA', 'distance :3 :7', 'distance :3 :7', 'vector :2 :3'
]
actlist = ActionList(commands, top=traj.top)
for frame in traj:
actlist.compute(frame)
aa_eq(pt.rmsd(traj, mask='@CA'), actlist.data[0])
aa_eq(pt.distance(traj, ':3 :7'), actlist.data[1])
aa_eq(pt.distance(traj, ':3 :7'), actlist.data[2])
aa_eq(
pt.vector.vector_mask(traj(rmsfit=(0, '@CA')), ':2 :3'),
actlist.data[3].values)
def test_modify_frame(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
dslist = CpptrajDatasetList()
dslist.add('topology', name='mytop')
# add a new topology
dslist[0].data = pt.strip(traj.top, ':WAT')
commands = [
'autoimage',
'strip :WAT',
'createcrd mycrd',
]
actlist = ActionList(commands, top=traj.top, dslist=dslist)
for frame in traj:
actlist.compute(frame)
aa_eq(dslist['mycrd'].xyz,
pt.get_coordinates(traj, mask='!:WAT', autoimage=True))
def test_modify_frame_use_Pipeline(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
dslist = CpptrajDatasetList()
dslist.add('topology', name='mytop')
# add a new topology
dslist[0].data = pt.strip(traj.top, ':WAT')
commands = [
'autoimage',
'strip :WAT',
'createcrd mycrd',
]
actlist = Pipeline(commands, top=traj.top, dslist=dslist)
for frame in traj:
actlist.compute(frame)
aa_eq(dslist['mycrd'].xyz,
pt.get_coordinates(traj, mask='!:WAT', autoimage=True))
def test_combine_with_frame_iterator(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
dslist = CpptrajDatasetList()
commands = [
'autoimage',
'rms',
]
actlist = ActionList(commands, top=traj.top, dslist=dslist)
def get_frameiter(actlist, traj):
for frame in traj:
actlist.compute(frame)
yield frame
def do_extra(fi):
a = []
for frame in fi:
frame.xyz = frame.xyz + 2.
a.append(frame.copy())
return a
new_list = do_extra(get_frameiter(actlist, traj))
t0 = traj[:].autoimage().superpose()
t0.xyz += 2.
aa_eq(np.array([frame.xyz for frame in new_list]), t0.xyz)
def test_combine_cpptraj_iterating_with_pytraj(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
commands = [
'autoimage',
'rms',
]
dslist = CpptrajDatasetList()
actlist = ActionList(commands, top=traj.top, dslist=dslist)
def get_fi(actlist, traj):
'''create a frame iterator with pre-processed by cpptraj
'''
for frame in traj:
actlist.compute(frame)
yield frame
ref = traj[3]
pt.autoimage(ref, top=traj.top)
fi = get_fi(actlist, traj)
rmsd_nofit_after_fitting = pt.rmsd_nofit(fi, ref=ref, top=traj.top)
t0 = traj[:].autoimage().superpose()
saved_rmsd_ = pt.rmsd_nofit(t0, ref=ref)
aa_eq(rmsd_nofit_after_fitting, saved_rmsd_)
def test_pipe(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
# from TrajectoryIterator
fi = pt.pipe(traj, ['autoimage', 'rms'])
xyz = np.array([frame.xyz.copy() for frame in fi])
t0 = traj[:].autoimage().superpose()
aa_eq(xyz, t0.xyz)
# from FrameIterator
fi = pt.pipe(traj(), ['autoimage', 'rms'])
xyz = np.array([frame.xyz.copy() for frame in fi])
t0 = traj[:].autoimage().superpose()
aa_eq(xyz, t0.xyz)
# from FrameIterator with indices
fi = pt.pipe(traj(0, 8, 2), ['autoimage', 'rms'])
xyz = np.array([frame.xyz.copy() for frame in fi])
t0 = traj[:8:2].autoimage().superpose()
aa_eq(xyz, t0.xyz)
# from TrajectoryIterator, cpptraj's command style
fi = pt.pipe(traj, '''
autoimage
rms''')
xyz = np.array([frame.xyz.copy() for frame in fi])
t0 = traj[:].autoimage().superpose()
aa_eq(xyz, t0.xyz)
def test_reference(self):
traj = pt.iterload(fn("tz2.ortho.nc"), fn("tz2.ortho.parm7"))
# store reference
dslist = CpptrajDatasetList()
ref = dslist.add('reference')
ref.top = traj.top
ref.append(traj[3])
fi = pt.pipe(traj, ['autoimage', 'rms refindex 0 @CA'], dslist=dslist)
xyz = np.array([frame.xyz.copy() for frame in fi])
t0 = (traj[:].autoimage().superpose(ref=traj[3], mask='@CA'))
aa_eq(xyz, t0.xyz)
t1 = traj[:].autoimage()
aa_eq(pt.rmsd(t1, ref=traj[3], mask='@CA'), dslist[-1].values)
def test_raising_error(self):
traj = pt.datafiles.load_tz2()
with pytest.raises(ValueError, match="ERROR: radgyr myrms @CA nomax"):
pt.compute(['rms myrms @CA','radgyr myrms @CA nomax'], traj)