-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface-train.py
50 lines (44 loc) · 1.49 KB
/
face-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 28 22:31:12 2019
@author: Mohammed
"""
import os
import cv2
from PIL import Image
import numpy as np
import pickle
train=[]
ylabel=[]
label_ids={}
current_id=0
face_cascade=cv2.CascadeClassifier('data/haarcascade_frontalface_alt2.xml')
recognizer=cv2.face.LBPHFaceRecognizer_create()
dire=os.path.dirname(os.path.abspath(__file__))
img_dir=os.path.join(dire,"images")
for root,dirs,files in os.walk(img_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path=os.path.join(root,file)
label=os.path.basename(os.path.dirname(path))
print(label,path)
if not label in label_ids:
label_ids[label]=current_id
current_id+=1
id_=label_ids[label]
pil_image=Image.open(path).convert("L")
size=(550,550)
final_image=pil_image.resize(size,Image.ANTIALIAS)
img_array=np.array(final_image,"uint8")
#print(img_array)
faces=face_cascade.detectMultiScale(img_array,scaleFactor=1.5,minNeighbors=5)
for (x,y,w,h) in faces:
roi=img_array[y:y+h,x:x+w]
train.append(roi)
ylabel.append(id_)
#print(train)
#print(label)
with open("labels.pickle","wb") as f:
pickle.dump(label_ids,f)
recognizer.train(train,np.array(ylabel))
recognizer.save("trainner.yml")