forked from beltoforion/AI-Infinite-Zoom-Generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfinite_zoom_impl.py
639 lines (474 loc) · 24.3 KB
/
infinite_zoom_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
from pathlib import Path
from exceptions.argument_exception import ArgumentException
from detectors.template_detector import *
import helper.image_helper as ih
import cv2
import screeninfo
import math
import time
class InfiniZoomParameter:
def __init__(self):
self.__zoom_steps = 100
self.__reverse = False
self.__auto_sort = False
self.__zoom_image_crop = 0.8
self.__zoom_factor = 2
self.__debug_mode = False
self.__fps = 60
self.__output_frames = False
self.__output_folder = ''
self.__output_file = ''
@property
def output_frames(self):
return self.__output_frames
@output_frames.setter
def output_frames(self, value: float):
self.__output_frames = value
@property
def fps(self):
return self.__fps
@fps.setter
def fps(self, value: float):
self.__fps = value
@property
def delay(self):
return self.__delay
@delay.setter
def delay(self, value: float):
self.__delay = value
@property
def debug_mode(self):
return self.__debug_mode
@debug_mode.setter
def debug_mode(self, state: bool):
self.__debug_mode = state
@property
def zoom_factor(self):
return self.__zoom_factor
@zoom_factor.setter
def zoom_factor(self, f: float):
self.__zoom_factor = f
@property
def zoom_image_crop(self):
return self.__zoom_image_crop
@zoom_image_crop.setter
def zoom_image_crop(self, crop: float):
self.__zoom_image_crop = crop
@property
def reverse(self):
return self.__reverse
@reverse.setter
def reverse(self, stat: bool):
self.__reverse = stat
@property
def auto_sort(self):
return self.__auto_sort
@auto_sort.setter
def auto_sort(self, stat: bool):
self.__auto_sort = stat
@property
def zoom_steps(self):
return self.__zoom_steps
@zoom_steps.setter
def zoom_steps(self, steps: int):
if steps<1:
raise ArgumentException("Range error: steps must be greater than 0")
self.__zoom_steps = steps
@property
def input_path(self):
return self.__input_path
@input_path.setter
def input_path(self, path : Path):
self.__input_path = path
@property
def output_file(self):
return self.__output_file
@output_file.setter
def output_file(self, file):
self.__output_file = file
@property
def output_folder(self):
return self.__output_folder
@output_folder.setter
def output_folder(self, folder):
self.__output_folder = folder
class InfiniZoom:
def __init__(self, param : InfiniZoomParameter):
self.__param = param
self.__image_list = []
self.__video_writer = None
self.__frames = []
self.__font = cv2.FONT_HERSHEY_DUPLEX
self.__fontScale = 0.6
self.__fontThickness = 1
self.__fontLineType = 1
# get screen resolution
screen = screeninfo.get_monitors()[0]
self.__screen_width = screen.width
self.__screen_height = screen.height
def __load_images(self):
if not self.__param.input_path.exists():
raise Exception("input path does not exist")
print(f'\nReading images from "{str(self.__param.input_path)}"')
self.__image_list = ih.read_images_folder(self.__param.input_path)
print(f' - {len(self.__image_list)} images read\n')
def __print_matrix(self, matrix):
rows, cols = matrix.shape
for i in range(rows):
for j in range(cols):
if matrix[i, j]==0:
print(' -- ', end=" ") # Print element followed by a tab
else:
print(f'{matrix[i, j]:.2f}', end=" ") # Print element followed by a tab
print()
def __auto_sort(self):
print(f'Determining image order')
# ibg 2023-08-19: #1
# changed method to TM_CCOEFF_NORMED from TM_CCORR_NORMED because the latter
# one failed with some images. Well it did not really fail but if found a
# false match to the first image in the series with a score of 0.92 (all other
# matches had a clean 1.0).
detector = TemplateDetector(threshold=0.01, max_num=1, method = cv2.TM_CCOEFF_NORMED)
num = len(self.__image_list)
scores = np.zeros((num, num))
prog = 0
debug_frames = None
for i in range(0, num):
max_score = 0
best_match = None
for j in range(0, num):
if i==j:
continue
prog += 1
print(f' - matching images {100*prog/(num*num-num):.0f} % ', end='\r')
img1 = self.__image_list[i].copy()
img2 = self.__image_list[j].copy()
if img1.shape != img2.shape:
raise Exception("Auto sort failed: Inconsistent image sizes!")
h, w = img1.shape[:2]
mtx_scale = cv2.getRotationMatrix2D((0, 0), 0, 1/self.__param.zoom_factor)
img2 = cv2.warpAffine(img2, mtx_scale, (int(w*1/self.__param.zoom_factor), int(h*1/self.__param.zoom_factor)))
detector.pattern = img2
result, result_img = detector.search(img1)
if len(result)==0:
print(f'Correlating image {i} with image {j}: Cannot find any related image. The series zoom factor is incorrect or you have unrealted images in the input folder!')
continue
else:
bx, by, bw, bh, score = result[0, :5]
if score > max_score:
max_score = score
best_match = self.__image_list[j].copy()
if self.__param.debug_mode:
# convert result_img to 8 bit
result_img = np.clip(result_img * 255, 0, 255).astype(np.uint8)
# copy correlation image centered into an image with the same size
# as the original
corr_result = np.zeros(img1.shape, np.uint8)
rh, rw = result_img.shape[0:2]
corr_result[rh//2:(rh//2)+rh, rw//2:(rw//2)+rw, :] = result_img[..., np.newaxis]
overview_image = np.zeros((h*2, w*2, 3), np.uint8)
overview_image[0:h, 0:w, :] = img1
overview_image[0:h, w:w+best_match.shape[1], :] = best_match
overview_image[h:h+img2.shape[0], 0:img2.shape[1], :] = img2
overview_image[h:h+corr_result.shape[0], w:w+corr_result.shape[1], :] = corr_result
max_width = 1200
scale = max_width / overview_image.shape[1]
new_width = int(overview_image.shape[1] * scale)
new_height = int(overview_image.shape[0] * scale)
overview_image = cv2.resize(overview_image, (new_width, new_height))
ho, wo = overview_image.shape[:2]
cv2.putText(overview_image, f'series image {i} of {num}; progress is {100*prog/(num*num-num):.0f} %', (20, 20), self.__font, self.__fontScale, (0,255,0), self.__fontThickness, self.__fontLineType)
cv2.putText(overview_image, f'best match so far; score={max_score:.2f}', (wo//2 + 20, 20), self.__font, self.__fontScale, (0,255,0), self.__fontThickness, self.__fontLineType)
cv2.putText(overview_image, f'normalized cross correlation', (wo//2 + 20, ho//2+20), self.__font, self.__fontScale, (0,255,0), self.__fontThickness, self.__fontLineType)
cv2.putText(overview_image, f'candidate {j}', (20, ho//2+20), self.__font, self.__fontScale, (0,255,0), self.__fontThickness, self.__fontLineType)
if debug_frames!=None:
debug_frames.append(overview_image.copy())
cv2.imshow("Finding image order", self.__downscale_to_screen(overview_image, 1920, 1080))
cv2.waitKey(10)
scores[i, j] = score
cv2.waitKey()
if debug_frames!=None:
time.sleep(1)
for i in range(0,20):
debug_frames.append(overview_image.copy())
# process the data to find the best matches for each image
self.__image_list = self.__filter_array(scores)
cv2.destroyAllWindows()
if debug_frames!=None:
vh, vw = overview_image.shape[:2]
self.__video_writer = cv2.VideoWriter("debug.mp4", cv2.VideoWriter_fourcc(*'mp4v'), 10, (vw, vh))
for frame in debug_frames:
self.__video_writer.write(frame)
self.__video_writer.release()
def __downscale_to_screen(self, img, screen_width, screen_height):
"""
Downscale an image so that it fits the screen dimensions while maintaining its aspect ratio.
Args:
- img (numpy.ndarray): The input image.
- screen_width (int): The width of the screen.
- screen_height (int): The height of the screen.
Returns:
- numpy.ndarray: The downscaled image.
"""
# Obtain the width and height of the image
img_height, img_width = img.shape[:2]
# Determine the aspect ratio of the image
aspect_ratio = img_width / img_height
# Calculate the dimensions if we were to fit by width
new_width_by_w = screen_width
new_height_by_w = int(screen_width / aspect_ratio)
# Calculate the dimensions if we were to fit by height
new_width_by_h = int(screen_height * aspect_ratio)
new_height_by_h = screen_height
# Choose the dimensions that fit within the screen
if new_width_by_w <= screen_width and new_height_by_w <= screen_height:
new_width, new_height = new_width_by_w, new_height_by_w
else:
new_width, new_height = new_width_by_h, new_height_by_h
# Resize the image
resized_img = cv2.resize(img, (new_width, new_height))
return resized_img
def __filter_array(self, arr):
filtered = np.zeros(arr.shape)
# Get the indices of the row and column maxima
row_max_indices = np.argmax(arr, axis=1)
col_max_indices = np.argmax(arr, axis=0)
# We need to find the first image of the series now. To do this we must check the
# images that could not be matched as a follow up image to any of the images.
# This could be images that were added accidentally but the first image is also unlinked!
unlinked_images = []
for r in range(arr.shape[0]):
# index of the maximum value of row r
col_max = row_max_indices[r]
# is this also the column maximum?
if col_max_indices[col_max]==r:
filtered[r, col_max] = arr[r, col_max]
else:
unlinked_images.append(r)
# Print the image connection matrix
print(f'\n\nImage relation matrix:')
self.__print_matrix(filtered)
# Now eliminate all unlinked images and find the first one:
num_unlinked = len(unlinked_images)
# print(f' - found {num_unlinked} unlinked images.')
if num_unlinked == 0:
print(f' - Warning: Cannot identify the first frame! This means that any image in the sequence is a good match as a follow-up image to another image in the same series.')
if num_unlinked > 1:
print(f' - Warning: Your series contains {num_unlinked-1} images that cannot be matched!')
print('\nFinding first image:')
start_candidates = []
for i in range(0, len(unlinked_images)):
idx = unlinked_images[i]
col = filtered[:, idx]
if np.any(col != 0):
print(f' - Image {idx} is the start of a zoom series')
start_candidates.append(idx)
else:
print(f' - Discarding image {idx} because it is unconnected to other images!')
if len(start_candidates)==0:
raise Exception("Aborting: Could not find start image!")
if len(start_candidates)>1:
raise Exception(f'Check the Zoom factor! If you are sure the zoom factor is correct clean up image series! I found {len(start_candidates)} different images that could be the starting image. This can happen if the zoom factor is off or if the series contains multiple images for the same zoom step.')
# finally build sorted image list
sequence_order = self.__assemble_image_sequence(idx, filtered)
print(f' - Image sequence is {",".join(map(str, sequence_order))}')
sorted_image_list = []
for idx in sequence_order:
sorted_image_list.append(self.__image_list[idx])
return sorted_image_list
def __assemble_image_sequence(self, start : int, conn_matrix):
series = []
next_image_index = start
series.insert(0, next_image_index)
non_zeros = np.nonzero(conn_matrix[:, next_image_index])[0]
while len(non_zeros)>0:
next_image_index = non_zeros[0]
series.insert(0, next_image_index)
non_zeros = np.nonzero(conn_matrix[:, next_image_index])[0]
return series
def process(self):
self.__load_images()
if len(self.__image_list)==0:
raise Exception("Processing failed: Image list is empty!")
if self.__param.auto_sort:
self.__auto_sort()
h, w = self.__image_list[0].shape[:2]
video_w = int(w * self.__param.zoom_image_crop)
video_h = int(h * self.__param.zoom_image_crop)
self.__frames = []
print(f'Generating Zoom Sequence')
for i in range(len(self.__image_list)-1):
img1 = self.__image_list[i]
img2 = self.__image_list[i+1]
self.zoom_in(img1, img2, video_w, video_h)
cv2.destroyAllWindows()
if self.__param.output_frames:
self.__save_frames()
else:
self.__create_video(video_w, video_h)
print(f'\nDone\n')
def __save_frames(self):
print(f'Saving frames to output folder {self.__param.output_folder} ')
if self.__param.reverse:
frames = reversed(self.__frames)
else:
frames = self.__frames
ct = 0
for frame in frames:
print(f' - Saving frame {ct}', end='\r')
cv2.imwrite(f'{self.__param.output_folder}/frame_{ct:05d}.png', frame)
ct += 1
def __create_video(self, video_w, video_h):
print(f'Creating output file {self.__param.output_file} ')
self.__video_writer = cv2.VideoWriter(self.__param.output_file, cv2.VideoWriter_fourcc(*'mp4v'), self.__param.fps, (video_w, video_h))
num_stills = int(self.__param.delay * self.__param.fps)
if self.__param.reverse:
frames = reversed(self.__frames)
else:
frames = self.__frames
ct = 0
for frame in frames:
if ct==0 or ct==len(self.__frames)-1:
for i in range(num_stills):
self.__video_writer.write(frame)
else:
self.__video_writer.write(frame)
ct += 1
self.__video_writer.release()
def __show_error_images(self, img_curr, img_next, text):
combined_image = cv2.hconcat([img_curr, img_next])
h, w = combined_image.shape[:2]
scale_factor = min(self.__screen_width / w, self.__screen_height / h)
scale_factor = min(1, scale_factor)
new_width = int(combined_image.shape[1] * scale_factor)
new_height = int(combined_image.shape[0] * scale_factor)
combined_image = cv2.resize(combined_image, (new_width, new_height))
for i, line in enumerate(text.split('\n')):
cv2.putText(
combined_image,
line,
(20, 20 + i*20),
self.__font,
self.__fontScale,
(0,255,0),
self.__fontThickness,
self.__fontLineType)
cv2.imshow("Image misalignment error", combined_image)
cv2.waitKey(0)
def zoom_in(self, imgCurr, imgNext, video_w, video_h):
zoom_steps = self.__param.zoom_steps
# imgNext has exactly a quarter the size of img
h, w = imgCurr.shape[:2]
cx = w // 2
cy = h // 2
# compute step size for each partial image zoom. Zooming is an exponential
# process, so we need to compute the steps on a logarithmic scale.
f = math.exp(math.log(self.__param.zoom_factor)/zoom_steps)
# copy images because we will modify them
img_curr = imgCurr.copy()
img_next = imgNext.copy()
display_scale = min(self.__screen_width / w, self.__screen_height / h)
display_scale = min(1, display_scale)
# Do the zoom
for i in range(0, zoom_steps):
zoom_factor = f**i
# zoom, the outter image
mtx_curr = cv2.getRotationMatrix2D((cx, cy), 0, zoom_factor)
img_curr = cv2.warpAffine(imgCurr, mtx_curr, (w, h))
# zoom the inner image, zoom factor is by the image series
# zoom factor smaller than that of the outter image
mtx_next = cv2.getRotationMatrix2D((cx, cy), 0, zoom_factor/self.__param.zoom_factor)
img_next = cv2.warpAffine(imgNext, mtx_next, (w, h))
# Zoomed inner image now has same size as outter image but is padded with
# black pixels. We need to crop it to the proper size.
ww = round(w * (zoom_factor/self.__param.zoom_factor))
hh = round(h * (zoom_factor/self.__param.zoom_factor))
# We cant use the entire image because close to the edges
# midjourney takes liberties with the content so we crop
# the inner image. (I also tries soft blending but crop
# looked better)
ww = int(ww * self.__param.zoom_image_crop)
hh = int(hh * self.__param.zoom_image_crop)
img_next = ih.crop_image(img_next, (ww, hh))
if i == 0:
# The second image may not be perfectly centered. We need to determine
# image offset to compensate
detector = TemplateDetector(threshold=0.3, max_num=1, method=cv2.TM_CCOEFF_NORMED)
detector.pattern = img_next
result, result_image = detector.search(img_curr)
if len(result)==0:
text = f'Error: Cannot match the following two images!'
self.__show_error_images(imgCurr, imgNext, text)
raise Exception("Cannot match image to precursor!")
# this is the "true" position that the inner image must
# have to match perfectly onto the outter. Theoretically
# it should always be centered to the outter image but
# midjourney takes some liberties here and there may be
# a significant offset (i.e. 20 Pixels).
bx, by, bw, bh, score = result[0, :5]
# compute initial misalignment of the second image. The second image
# *should* be centered to the outter image but it is often not.
# So we need to use this initial offset when we insert the inner image
# in order to not have visual jumps but we have to gradually eliminate the
# misalignment as we zoom out that it is zero when switching to
# the next image.
ma_x = int(cx - bx)
ma_y = int(cy - by)
# Plausibility check. If the misalignment is too large something is wrong.
# Usually the images are not in sequence or a zoom step is missing.
if abs(ma_x) > w/5 or abs(ma_y) > h/5:
cv2.imshow("-haystack-", img_curr)
cv2.waitKey(0)
cv2.imshow("-needle-", img_next)
cv2.waitKey(0)
text = f'Error: Strong image misalignment found in zoom step {i} between these two images.\n' \
f'The offset vector is (dx={ma_x}, dy={ma_y}) which indicated an error in the sequence.\n' \
f'Images may not be in order, or contain multiple images for at least one zoom step.'
self.__show_error_images(imgCurr, imgNext, text)
raise Exception(f'Strong image misalignment found in step {i} (delta_x={ma_x}, delta_y={ma_y})! The images may not be in order, or the zoom factor is incorrect. Try using the "-as" option!')
# How much do we need to compensate for each step?
ma_comp_x = ma_x / zoom_steps
ma_comp_y = ma_y / zoom_steps
# Add the smaller image into the larger one but shift it to
# compensate the misalignment. Problem is that when it is maximized
# it would be shifted off center. We need to fix that later.
hs = hh//2 + ma_y
ws = ww//2 + ma_x
img_curr[cy-hs:cy-hs+hh, cx-ws:cx-ws+ww] = img_next
# finally we have to gradually shift the resulting image back because the
# next frame should again be close to the center and the misalignment compensation
# brought us away. So we gradually shift the combined image back so that the center
# position remains in the center.
ox = ma_comp_x * i
oy = ma_comp_y * i
print(f' - frame misalignment: zoom_step={i}; x_total={ma_x:.2f}; y_total={ma_y:.2f}; x_step={ma_x-ox:.2f}; y_step={ma_y-oy:.2f}', end='\r')
if self.__param.debug_mode:
# Draw Center cross for outter image
cv2.line(img_curr, (0, 0), (w, h), (0,0,255), thickness=1)
cv2.line(img_curr, (0, h), (w, 0), (0,0,255), thickness=1)
# Draw rectangle around actual image
cv2.rectangle(img_curr, (cx-ws, cy-hs), (cx-ws+ww, cy-hs+hh), (0,255,0), 1)
# Draw Center cross for inner image
cv2.line(img_curr, (cx-ws, cy-hs), (cx-ws+ww, cy-hs+hh), (0,255,0), thickness=1)
cv2.line(img_curr, (cx-ws, cy-hs+hh), (cx-ws+ww, cy-hs), (0,255,0), thickness=1)
mtx_shift = np.float32([[1, 0, ox], [0, 1, oy]])
img_curr = cv2.warpAffine(img_curr, mtx_shift, (img_curr.shape[1], img_curr.shape[0]))
if self.__param.debug_mode:
xp = (w - video_w)//2
yp = (h - video_h)//2
cv2.putText(img_curr, f'rel_zoom={zoom_factor:.2f}', (xp+5, yp+20), self.__font, self.__fontScale, (0,0,255), self.__fontThickness, self.__fontLineType)
cv2.putText(img_curr, f'size_inner={ww:.0f}x{hh:.0f}', (xp+5, yp+40), self.__font, self.__fontScale, (0,0,255), self.__fontThickness, self.__fontLineType)
cv2.putText(img_curr, f'mis_align={ma_x},{ma_y}', (xp+5, yp+60), self.__font, self.__fontScale, (0,0,255), self.__fontThickness, self.__fontLineType)
cv2.putText(img_curr, f'mis_align_res={ma_x-ox:.1f},{ma_x-ox:0.1f}', (xp+5, yp+80), self.__font, self.__fontScale, (0,0,255), self.__fontThickness, self.__fontLineType)
# Draw static image center marker
cv2.line(img_curr, (cx, 0), (cx, h), (255, 0, 0), thickness=1)
cv2.line(img_curr, (0, cy), (w, cy), (255, 0, 0), thickness=1)
# final crop, ther may be some inconsiostencies at the boundaries
img_curr = ih.crop_image(img_curr, (video_w, video_h))
self.__frames.append(img_curr)
img_display = cv2.resize(img_curr, None, fx=display_scale, fy=display_scale, interpolation=cv2.INTER_AREA)
cv2.imshow("Frame generation progress...", img_display)
key = cv2.waitKey(10)
if key == 27 or cv2.getWindowProperty("Frame generation progress...", cv2.WND_PROP_VISIBLE) < 1:
raise Exception("User aborted!")
print()