-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathopen20q_augmented.py
513 lines (452 loc) · 17.4 KB
/
open20q_augmented.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/env python3.3
# -*- encoding: utf-8 -*-
# According to the ideas of http://lists.canonical.org/pipermail/kragen-tol/2010-March/000912.html
import numpy
import operator
from collections import OrderedDict, defaultdict
from functools import reduce
def normalize(probabilities):
" rescale `probabilities` so that its entries add up to 1 "
return probabilities/probabilities.sum()
def c(constant): return lambda *argv, **kwargs: constant
id = lambda x:x
class NaiveBayes:
def __init__(self,
cpd_matrix,
classes=None,
features=None,
values=None,
prior=None):
self.cpd = numpy.asarray(cpd_matrix)
self.__set_features(features)
self.__set_values(values, classes)
self.__set_prior(prior)
self.del_evidence()
def __set_prior(self, prior):
if prior is None:
prior = normalize(numpy.ones(self.cpd.shape[1]))
self.prior = prior
def __set_features(self, features=None):
try:
features.items()
except AttributeError:
if features is None:
features = range(self.cpd.shape[0])
features = {f: [i] for i, f in enumerate(features)}
self.features = features
def __set_values(self, values=None, classes=None):
if values is None:
values = {}
for feature, cpd_indices in self.features.items():
if len(cpd_indices) == 1:
self.cpd = numpy.vstack(
(self.cpd,
[1-self.cpd[cpd_indices[0]]]))
cpd_indices.append(len(self.cpd)-1)
values[feature] = ("Yes", "No")
else:
values.setdefault(feature,
range(len(cpd_indices)))
self.values = values
if classes is None:
classes = range(self.cpd.shape[1])
self.values["class"] = classes
def belief(self, node):
if node == "class":
posterior = self.prior*self.class_evidence
ev = self.evidence
given = numpy.isfinite(ev)
if given.any():
yes = (ev[given] * self.cpd[given].T).T
no = ((1-ev[given]) * (1-self.cpd[given]).T).T
lambdas = yes+no
if numpy.isfinite(ev).any():
for l in lambdas:
posterior *= l
return normalize(posterior)
else:
cpds = self.features[node]
belief = numpy.dot(self.cpd[cpds],
self.belief("class"))
if numpy.isfinite(self.evidence[cpds]).all():
return belief*self.evidence[cpds]
else:
return belief
def set_evidence(self, node, value):
if node == "class":
self.class_evidence = value
else:
cpd_indices = self.features[node]
self.evidence[cpd_indices] = value
def get_evidence(self, node):
if node == "class":
return self.class_evidence
else:
cpd_indices = self.features[node]
return self.evidence[cpd_indices]
def del_evidence(self):
self.evidence = numpy.array(
[numpy.nan]*self.cpd.shape[0])
self.class_evidence = numpy.ones(self.cpd.shape[1])
def add_class(self, name, epsilon=1e-2):
self.values["class"].append(name)
new_cpd = numpy.hstack((
self.cpd,
numpy.zeros((self.cpd.shape[0],1))))
for f, i in self.features.items():
b = self.belief(f)
if numpy.isfinite(b).all():
new_cpd[i, -1] = (1-epsilon)*b+epsilon*(1-b)
else:
new_cpd[i, -1] = .5
self.cpd=new_cpd
self.prior=normalize(numpy.hstack((
self.prior,
(epsilon,))))
self.del_evidence()
def add_feature(self, name, values=["Yes","No"]):
lines = len(values)
cpd = numpy.vstack(
(self.cpd,
(numpy.ones((lines, self.cpd.shape[1]))/lines)))
self.features[name] = list(range(len(cpd)-lines, len(cpd)))
self.values[name] = values
self.cpd = cpd
self.del_evidence()
def update_from_evidence(self, name, epsilon=1e-2):
item = self.values["class"].index(name)
for f, i in self.features.items():
b = self.belief(f)
if numpy.isfinite(b).all():
self.cpd[i, item] = (
self.cpd[i, item]*(1-epsilon)
+ b[1]*epsilon)
self.prior = self.prior*(1-epsilon)
self.prior[item] += epsilon
class RandomNaiveBayes (NaiveBayes):
def __init__(self,
cpd_matrix,
n_classifiers=20,
classes=None,
features=None,
values=None,
prior=None):
self.__set_features(features)
self.__set_values(values, classes)
self.classifiers = []
for n in range(n_classifiers):
features = {}
cpd = []
for f, cpd_lines in self.features.items():
if numpy.random.random()<0.901:
features[f] = []
for c in cpd_lines:
cpd.append(self.cpd[c])
features[f].append(len(cpd)-1)
self.classifiers.append(NaiveBayes(
cpd_matrix=cpd,
classes=self.values["class"][:],
features=features,
prior=self.prior) )
self.del_evidence()
def __wrap_method(m, acc=lambda new,x:x, init=None, ret=id):
def wrapped(self, *args, **kwargs):
x = init
for c in self.classifiers:
try: x = acc(m(c, *args, **kwargs), x)
except KeyError: pass
return ret(x)
return wrapped
belief = __wrap_method(
NaiveBayes.belief, lambda new, x: (x[0]+new, x[1]+1),
(0,0), lambda x: x[0]/x[1])
set_evidence = __wrap_method(NaiveBayes.set_evidence)
del_evidence = __wrap_method(NaiveBayes.del_evidence)
get_evidence = __wrap_method(
NaiveBayes.get_evidence, lambda new, x:
(x[0]+new, x[1]+1), (0,0), lambda x: x[0]/x[1])
update_from_evidence = __wrap_method(
NaiveBayes.update_from_evidence)
def add_class(self, name, epsilon=1e-2):
self.values["class"].append(name)
for c in self.classifiers: c.add_class(name, epsilon)
def add_feature(self, name):
self.features[name] = None
for c in self.classifiers:
if numpy.random.random()<0.901: c.add_feature(name)
# ==== Pandas Testing ====
import pandas
Dx = pandas.DataFrame({"x": [False,True], "p": [0.9,0.1]})
Dx.set_index(["x"], inplace=True)
Dxy = pandas.DataFrame({"x": [False,True,False,True], "y": [False,False,True,True], "p": [0.2,0.8,0.9,0.1]})
Dxy.set_index(["x","y"], inplace=True)
Dxz = pandas.DataFrame({"x": [False,False,False,True], "z": [0,1,2,0], "p": [0.2,0.4,0.4,1]})
Dxz.set_index(["x","z"], inplace=True)
# ==== (End) ====
class Factor:
def __init__(self, cpd_table, name=None):
""" Build a CPD lookup function with name `name` from the DataFrame cpd_table """
self.name = name
self.cpd = cpd_table
self.children = []
self.parents = []
@property
def argspec(self):
return self.cpd.index.names
@property
def __name__(self):
return self.name
def __call__(self, *args, **kwargs):
if len(args) == 1:
return self.cpd.get_value(args[0], "p")
else:
return self.cpd.get_value(tuple(args), "p")
@property
def domain(self):
try:
return self.cpd.index.levels[-1]
except AttributeError:
return self.cpd.index
from bayesian.bbn import BBN, BBNNode
import bayesian
class TreeAugmentedNaiveBayes (BBN, NaiveBayes):
"""A class for Tree (or Forest) Augmented Naive Bayes Classifiers. It
follows the same interface as NaiveBayes above (it is a subclass with
most methods overwritten), but is a `bayes.BBN` under the hood (and
therefore a subclass of that).
"""
def __init__(self,
factors,
classes=None,
features=None,
values=None,
prior=None):
variables = set()
domains = {}
variable_nodes = {}
factor_nodes = {}
for factor in factors:
# factor: .argspec, .__call__, .__name__
variables.update(factor.argspec)
factor_nodes[factor.name] = factor
for parent in factor.argspec:
factor.parents.append(factor_nodes[parent])
for factor in factor_nodes.values():
for parent in factor.argspec:
if parent != factor.name:
bayesian.bbn.connect(factor_nodes[parent], factor)
domains[factor.name] = factor.func.domain
BBN.__init__(self, factor_nodes, name="Classifier")
self.domains = domains
self.evidence = {}
@property
def values(self):
return self.domains
def belief(self, node):
# Modified from BBN.query
node = self.vars_to_nodes[node]
jt = self.build_join_tree()
assignments = jt.assign_clusters(self)
jt.initialize_potentials(assignments,
self,
self.evidence)
jt.propagate()
marginals = dict()
normalizers = defaultdict(float)
for k, v in jt.marginal(node).items():
# For a single node the
# key for the marginal tt always
# has just one argument so we
# will unpack it here
marginals[k[0]] = v
# If we had any evidence then we
# need to normalize all the variables
# not evidenced.
if self.evidence:
normalizers[k[0][0]] += v
if self.evidence:
for k, v in marginals.items():
if normalizers[k[0]] != 0:
marginals[k] /= normalizers[k[0]]
return [marginals[(node.name, value)]
for value in self.domains[node.name]]
@property
def features(self):
return set(self.vars_to_nodes)-set(["class"])
def set_evidence(self, node, value):
self.evidence[node] = value
def get_evidence(self, node):
return self.evidence.get(node)
def del_evidence(self):
self.evidence = {}
def add_class(self, name, epsilon=1e-2): raise NotImplementedError
def add_feature(self, name, values=["Yes","No"]): raise NotImplementedError
def update_from_evidence(self, name, epsilon=1e-2): raise NotImplementedError
knowledge = NaiveBayes(
[[1, 1, 1, 1, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1],
[0,.1,.8, 1,.9, 1,.8,.1, 0, 0],
[0, 1, 1, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 1],
[1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0]],
classes=["1","2","3","4","5","6","7","8","9","0"],
features={"Is X<=5?":[0], "Is X>5?":[1], "Is X odd?":[2], "Is X even?":[3], "Is X<=1?":[4], "Is X<=7?":[5], "Is X close to 5?":[6], "Is X prime?":[7], "What is X mod 3?":[8,9,10]},
values={"What is X mod 3?":["0","1","2"]})
def cpd_matrix_to_factors(
cpd_matrix,
classes=None,
features=None,
values=None,
prior=None):
self_cpd = numpy.asarray(cpd_matrix)
if prior is None:
prior = normalize(numpy.ones(self_cpd.shape[1]))
self_prior = prior
try:
features.items()
except AttributeError:
if features is None:
features = range(self_cpd.shape[0])
features = {f: [i] for i, f in enumerate(features)}
self_features = features
if values is None:
values = {}
for feature, cpd_indices in self_features.items():
if len(cpd_indices) == 1:
self_cpd = numpy.vstack(
(self_cpd,
[1-self_cpd[cpd_indices[0]]]))
cpd_indices.append(len(self_cpd)-1)
values[feature] = ("Yes", "No")
else:
values.setdefault(feature,
range(len(cpd_indices)))
self_values = values
if classes is None:
classes = range(self_cpd.shape[1])
self_values["class"] = classes
factors = [
Factor(pandas.DataFrame([
{"class": c, "p": p}
for c, p in zip(self_values["class"],
prior)]).set_index(["class"]),
"class")]
for feature, rows in self_features.items():
factors.append(Factor(pandas.DataFrame([
{"class":c, feature: v, "p": p[i]}
for v, p in zip(self_values[feature],
self_cpd[rows])
for i, c in enumerate(self_values["class"])])
.set_index(["class",feature]),
feature))
for cl in self_values["class"]:
factors.append(Factor(pandas.DataFrame([
{"class": c, cl: boolean, "p": float((c==cl)==boolean)}
for c in self_values["class"]
for boolean in [True, False]]).set_index(["class",cl]), cl))
return factors
knowledge = TreeAugmentedNaiveBayes(map(BBNNode, cpd_matrix_to_factors([[1, 1, 1, 1, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1],
[0,.1,.8, 1,.9, 1,.8,.1, 0, 0],
[0, 1, 1, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 1],
[1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0]],
classes=["1","2","3","4","5","6","7","8","9","0"],
features={"Is X<=5?":[0], "Is X>5?":[1], "Is X odd?":[2], "Is X even?":[3], "Is X<=1?":[4], "Is X<=7?":[5], "Is X close to 5?":[6], "Is X prime?":[7], "What is X mod 3?":[8,9,10]},
values={"What is X mod 3?":["0","1","2"]})))
epsilon = 0.1
questions = (int(numpy.log(len(knowledge.values["class"]))/numpy.log(2) * (1/(1-epsilon)))+2)
history = 100
def xlogx(x):
x = numpy.asarray(x)
l = numpy.zeros_like(x)
l[x>0] = numpy.log(x[x>0])
return x * l
def entropy(ps):
return -xlogx(ps).sum()
class Interface:
def __init__(self):
pass
def pose_question(self, question, answers):
print(question)
print(", ".join("{:s}: {:d}".format(str(answer), i)
for i, answer in enumerate(sorted(answers))))
x = input("> ")
x = int(x)
x = sorted(answers)[x]
print(x, type(x) if type(x)!=str else "")
return x
def pose_final_question(self, item):
return self.pose_question("Is it {:s}?".format(item), [False, True])
def pose_alternative(self):
return input("What then? ")
def win(self):
print("Yay, I win. Another!")
interface = Interface()
def decide_question(knowledge, epsilon=None, force_final=False):
if epsilon is None:
epsilon = 0.1
if force_final or entropy(knowledge.belief("class"))<1:
p = numpy.argmax(knowledge.belief("class"))
return knowledge.values["class"][p]
questions = [
f for f in knowledge.features
if knowledge.get_evidence(f) is None]
if numpy.random.random()<epsilon:
#With an epsilon chance,
#ask a random question
return numpy.random.choice(questions)
#Otherwise, ask the most relevant question.
entropies_after_answer = {}
for question in questions:
entropies_after_answer[question] = 0
p_answers = knowledge.belief(question)
for answer, p in zip(knowledge.values[question],
p_answers):
if p > 0:
knowledge.set_evidence(question, answer)
entropies_after_answer[question] += p * entropy(
knowledge.belief("class"))
del knowledge.evidence[question]
if not numpy.isfinite(entropies_after_answer[question]):
entropies_after_answer[question] = numpy.inf
return min(
entropies_after_answer,
key = entropies_after_answer.get)
def run(questions, knowledge, interface):
knowledge.del_evidence()
for i in range(questions):
if i>=questions-1:
question = decide_question(knowledge, force_final=True)
else:
question = decide_question(knowledge)
if question in knowledge.values["class"]:
answer = interface.pose_final_question(question)
else:
answers = knowledge.values[question]
answer = interface.pose_question(question, answers)
knowledge.set_evidence(question, answer)
if question in knowledge.values["class"] and answer:
item = question
interface.win()
break
else:
item = interface.pose_alternative()
if item in knowledge.values["class"]:
knowledge.update_from_evidence(item)
else:
knowledge.add_class(item)
knowledge.del_evidence()
if __name__ == "__main__":
while 1:
run(questions, knowledge, interface)