forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironment_wrappers.py
375 lines (293 loc) · 11.3 KB
/
environment_wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Environment with keyboard."""
import itertools
from absl import logging
import dm_env
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
import tree
from option_keyboard import smart_module
class EnvironmentWithLogging(dm_env.Environment):
"""Wraps an environment with additional logging."""
def __init__(self, env):
self._env = env
self._episode_return = 0
def reset(self):
self._episode_return = 0
return self._env.reset()
def step(self, action):
"""Take action in the environment and do some logging."""
step = self._env.step(action)
if step.first():
step = self._env.step(action)
self._episode_return = 0
self._episode_return += step.reward
return step
@property
def episode_return(self):
return self._episode_return
def action_spec(self):
return self._env.action_spec()
def observation_spec(self):
return self._env.observation_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class EnvironmentWithKeyboard(dm_env.Environment):
"""Wraps an environment with a keyboard."""
def __init__(self,
env,
keyboard,
keyboard_ckpt_path,
n_actions_per_dim,
additional_discount,
call_and_return=False):
self._env = env
self._keyboard = keyboard
self._discount = additional_discount
self._call_and_return = call_and_return
options = _discretize_actions(n_actions_per_dim, keyboard.num_cumulants)
self._options_np = options
options = tf.convert_to_tensor(options, dtype=tf.float32)
self._options = options
obs_spec = self._extract_observation(env.observation_spec())
obs_ph = tf.placeholder(shape=obs_spec.shape, dtype=obs_spec.dtype)
option_ph = tf.placeholder(shape=(), dtype=tf.int32)
gpi_action = self._keyboard.gpi(obs_ph, options[option_ph])
session = tf.Session()
self._gpi_action = session.make_callable(gpi_action, [obs_ph, option_ph])
self._keyboard_action = session.make_callable(
self._keyboard(tf.expand_dims(obs_ph, axis=0))[0], [obs_ph])
session.run(tf.global_variables_initializer())
if keyboard_ckpt_path:
saver = tf.train.Saver(var_list=keyboard.variables)
saver.restore(session, keyboard_ckpt_path)
def _compute_reward(self, option, obs):
return np.sum(self._options_np[option] * obs["cumulants"])
def reset(self):
return self._env.reset()
def step(self, option):
"""Take a step in the keyboard, then the environment."""
step_count = 0
option_step = None
while True:
obs = self._extract_observation(self._env.observation())
action = self._gpi_action(obs, option)
action_step = self._env.step(action)
step_count += 1
if option_step is None:
option_step = action_step
else:
new_discount = (
option_step.discount * self._discount * action_step.discount)
new_reward = (
option_step.reward + new_discount * action_step.reward)
option_step = option_step._replace(
observation=action_step.observation,
reward=new_reward,
discount=new_discount,
step_type=action_step.step_type)
if action_step.last():
break
# Terminate option.
if self._should_terminate(option, action_step.observation):
break
if not self._call_and_return:
break
return option_step
def _should_terminate(self, option, obs):
if self._compute_reward(option, obs) > 0:
return True
elif np.all(self._options_np[option] <= 0):
# TODO(shaobohou) A hack ensure option with non-positive weights
# terminates after one step
return True
else:
return False
def action_spec(self):
return dm_env.specs.DiscreteArray(
num_values=self._options_np.shape[0], name="action")
def _extract_observation(self, obs):
return obs["arena"]
def observation_spec(self):
return self._env.observation_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class EnvironmentWithKeyboardDirect(dm_env.Environment):
"""Wraps an environment with a keyboard.
This is different from EnvironmentWithKeyboard as the actions space is not
discretized.
TODO(shaobohou) Merge the two implementations.
"""
def __init__(self,
env,
keyboard,
keyboard_ckpt_path,
additional_discount,
call_and_return=False):
self._env = env
self._keyboard = keyboard
self._discount = additional_discount
self._call_and_return = call_and_return
obs_spec = self._extract_observation(env.observation_spec())
obs_ph = tf.placeholder(shape=obs_spec.shape, dtype=obs_spec.dtype)
option_ph = tf.placeholder(
shape=(keyboard.num_cumulants,), dtype=tf.float32)
gpi_action = self._keyboard.gpi(obs_ph, option_ph)
session = tf.Session()
self._gpi_action = session.make_callable(gpi_action, [obs_ph, option_ph])
self._keyboard_action = session.make_callable(
self._keyboard(tf.expand_dims(obs_ph, axis=0))[0], [obs_ph])
session.run(tf.global_variables_initializer())
if keyboard_ckpt_path:
saver = tf.train.Saver(var_list=keyboard.variables)
saver.restore(session, keyboard_ckpt_path)
def _compute_reward(self, option, obs):
assert option.shape == obs["cumulants"].shape
return np.sum(option * obs["cumulants"])
def reset(self):
return self._env.reset()
def step(self, option):
"""Take a step in the keyboard, then the environment."""
step_count = 0
option_step = None
while True:
obs = self._extract_observation(self._env.observation())
action = self._gpi_action(obs, option)
action_step = self._env.step(action)
step_count += 1
if option_step is None:
option_step = action_step
else:
new_discount = (
option_step.discount * self._discount * action_step.discount)
new_reward = (
option_step.reward + new_discount * action_step.reward)
option_step = option_step._replace(
observation=action_step.observation,
reward=new_reward,
discount=new_discount,
step_type=action_step.step_type)
if action_step.last():
break
# Terminate option.
if self._should_terminate(option, action_step.observation):
break
if not self._call_and_return:
break
return option_step
def _should_terminate(self, option, obs):
if self._compute_reward(option, obs) > 0:
return True
elif np.all(option <= 0):
# TODO(shaobohou) A hack ensure option with non-positive weights
# terminates after one step
return True
else:
return False
def action_spec(self):
return dm_env.specs.BoundedArray(shape=(self._keyboard.num_cumulants,),
dtype=np.float32,
minimum=-1.0,
maximum=1.0,
name="action")
def _extract_observation(self, obs):
return obs["arena"]
def observation_spec(self):
return self._env.observation_spec()
def __getattr__(self, name):
return getattr(self._env, name)
def _discretize_actions(num_actions_per_dim,
action_space_dim,
min_val=-1.0,
max_val=1.0):
"""Discrete action space."""
if num_actions_per_dim > 1:
discretized_dim_action = np.linspace(
min_val, max_val, num_actions_per_dim, endpoint=True)
discretized_actions = [discretized_dim_action] * action_space_dim
discretized_actions = itertools.product(*discretized_actions)
discretized_actions = list(discretized_actions)
elif num_actions_per_dim == 1:
discretized_actions = [
max_val * np.eye(action_space_dim),
min_val * np.eye(action_space_dim),
]
discretized_actions = np.concatenate(discretized_actions, axis=0)
elif num_actions_per_dim == 0:
discretized_actions = np.eye(action_space_dim)
else:
raise ValueError(
"Unsupported num_actions_per_dim {}".format(num_actions_per_dim))
discretized_actions = np.array(discretized_actions)
# Remove options with all zeros.
non_zero_entries = np.sum(np.square(discretized_actions), axis=-1) != 0.0
discretized_actions = discretized_actions[non_zero_entries]
logging.info("Total number of discretized actions: %s",
len(discretized_actions))
logging.info("Discretized actions: %s", discretized_actions)
return discretized_actions
class EnvironmentWithLearnedPhi(dm_env.Environment):
"""Wraps an environment with learned phi model."""
def __init__(self, env, model_path):
self._env = env
create_ph = lambda x: tf.placeholder(shape=x.shape, dtype=x.dtype)
add_batch = lambda x: tf.expand_dims(x, axis=0)
# Make session and callables.
with tf.Graph().as_default():
model = smart_module.SmartModuleImport(hub.Module(model_path))
obs_spec = env.observation_spec()
obs_ph = tree.map_structure(create_ph, obs_spec)
action_ph = tf.placeholder(shape=(), dtype=tf.int32)
phis = model(tree.map_structure(add_batch, obs_ph), add_batch(action_ph))
self.num_phis = phis.shape.as_list()[-1]
self._last_phis = np.zeros((self.num_phis,), dtype=np.float32)
session = tf.Session()
self._session = session
self._phis_fn = session.make_callable(
phis[0], tree.flatten([obs_ph, action_ph]))
self._session.run(tf.global_variables_initializer())
def reset(self):
self._last_phis = np.zeros((self.num_phis,), dtype=np.float32)
return self._env.reset()
def step(self, action):
"""Take action in the environment and do some logging."""
phis = self._phis_fn(*tree.flatten([self._env.observation(), action]))
step = self._env.step(action)
if step.first():
phis = self._phis_fn(*tree.flatten([self._env.observation(), action]))
step = self._env.step(action)
step.observation["cumulants"] = phis
self._last_phis = phis
return step
def action_spec(self):
return self._env.action_spec()
def observation(self):
obs = self._env.observation()
obs["cumulants"] = self._last_phis
return obs
def observation_spec(self):
obs_spec = self._env.observation_spec()
obs_spec["cumulants"] = dm_env.specs.BoundedArray(
shape=(self.num_phis,),
dtype=np.float32,
minimum=-1e9,
maximum=1e9,
name="collected_resources")
return obs_spec
def __getattr__(self, name):
return getattr(self._env, name)