forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjaxline_train.py
574 lines (509 loc) · 21.4 KB
/
jaxline_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The training script for the HGN models."""
import functools
from absl import app
from absl import flags
from absl import logging
from dm_hamiltonian_dynamics_suite import load_datasets
import haiku as hk
import jax
import jax.numpy as jnp
from jaxline import experiment
from jaxline import platform
import numpy as np
import optax
from physics_inspired_models import eval_metric
from physics_inspired_models import utils
from physics_inspired_models.models import common
AutoregressiveModel = common.autoregressive.TeacherForcingAutoregressiveModel
class HGNExperiment(experiment.AbstractExperiment):
"""HGN experiment."""
CHECKPOINT_ATTRS = {
"_params": "params",
"_state": "state",
"_opt_state": "opt_state",
}
NON_BROADCAST_CHECKPOINT_ATTRS = {
"_python_step": "python_step"
}
def __init__(self, mode, init_rng, config):
super().__init__(mode=mode)
self.mode = mode
self.init_rng = init_rng
self.config = config
# Checkpointed experiment state.
self._python_step = None
self._params = None
self._state = None
self._opt_state = None
# Input pipelines.
self._train_input = None
self._step_fn = None
self._burnin_fn = None
self._eval_input = None
self._eval_batch = None
self._eval_input_metric = None
self._eval_input_vpt = None
self._compute_gt_state_and_latents = None
self._get_reconstructions = None
self._get_samples = None
# Construct the model
model_kwargs = dict(**self.config.model_kwargs)
self.model = common.construct_model(**model_kwargs)
# Construct the optimizer
optimizer_ctor = getattr(optax, self.config.optimizer.name)
self.optimizer = optimizer_ctor(**self.config.optimizer.kwargs)
self.model_init = jax.pmap(self.model.init)
self.opt_init = jax.pmap(self.optimizer.init)
logging.info("Number of hosts: %d/%d",
jax.process_index(), jax.process_count())
logging.info("Number of local devices: %d/%d", jax.local_device_count(),
jax.device_count())
def _process_stats(self, stats, axis_name=None):
keys_to_remove = list()
for key in stats.keys():
for dropped_keys in self.config.drop_stats_containing:
if dropped_keys in key:
keys_to_remove.append(key)
break
for key in keys_to_remove:
stats.pop(key)
# Take average statistics
stats = jax.tree_map(utils.mean_if_not_scalar, stats)
stats = utils.filter_only_scalar_stats(stats)
if axis_name is not None:
stats = utils.pmean_if_pmap(stats, axis_name="i")
return stats
# _ _
# | |_ _ __ __ _(_)_ __
# | __| '__/ _` | | '_ \
# | |_| | | (_| | | | | |
# \__|_| \__,_|_|_| |_|
#
def step(self, global_step, rng, **unused_args):
"""See base class."""
if self._train_input is None:
self._initialize_train()
# Do a small burnin to accumulate any persistent network state
if self._python_step == 0 and self._state:
for _ in range(self.config.training.burnin_steps):
rng, key = utils.p_split(rng, 2)
batch = next(self._train_input)
self._state = self._burnin_fn(self._params, self._state, key, batch)
self._state = jax.tree_map(
lambda x: x / self.config.training.burnin_steps, self._state)
batch = next(self._train_input)
self._params, self._state, self._opt_state, stats = self._step_fn(
self._params, self._state, self._opt_state, rng, batch, global_step)
self._python_step += 1
stats = utils.get_first(stats)
logging.info("global_step: %d, %s", self._python_step,
jax.tree_map(float, stats))
return stats
def _initialize_train(self):
self._train_input = utils.py_prefetch(
load_datasets.dataset_as_iter(self._build_train_input))
self._burnin_fn = jax.pmap(
self._jax_burnin_fn, axis_name="i", donate_argnums=list(range(1, 4)))
self._step_fn = jax.pmap(
self._jax_train_step_fn, axis_name="i", donate_argnums=list(range(5)))
if self._params is not None:
logging.info("Not running initialization - loaded from checkpoint.")
assert self._opt_state is not None
return
logging.info("Initializing parameters - NOT loading from checkpoint.")
# Use the same rng on all devices, so that the initialization is identical
init_rng = utils.bcast_local_devices(self.init_rng)
# Initialize the parameters and the optimizer
batch = next(self._train_input)
self._params, self._state = self.model_init(init_rng, batch)
self._python_step = 0
self._opt_state = self.opt_init(self._params)
def _build_train_input(self):
batch_size = self.config.training.batch_size
return load_datasets.load_dataset(
path=self.config.dataset_folder,
tfrecord_prefix="train",
sub_sample_length=self.model.train_sequence_length,
per_device_batch_size=batch_size,
num_epochs=self.config.training.num_epochs,
drop_remainder=True,
multi_device=True,
shuffle=True,
shuffle_buffer=100 * batch_size,
cache=False,
keys_to_preserve=["image"],
)
def _jax_train_step_fn(self, params, state, opt_state, rng_key, batch, step):
# The loss and the stats are averaged over the batch
def loss_func(*args):
outs = self.model.training_objectives(*args, is_training=True)
# Average everything over the batch
return jax.tree_map(utils.mean_if_not_scalar, outs)
# Compute gradients
grad_fn = jax.grad(loss_func, has_aux=True)
grads, (state, stats, _) = grad_fn(params, state, rng_key, batch, step)
# Average everything over the devices (e.g. average and sync)
grads, state = utils.pmean_if_pmap((grads, state), axis_name="i")
# Apply updates
updates, opt_state = self.optimizer.update(grads, opt_state)
params = optax.apply_updates(params, updates)
return params, state, opt_state, self._process_stats(stats, axis_name="i")
def _jax_burnin_fn(self, params, state, rng_key, batch):
_, (new_state, _, _) = self.model.training_objectives(
params, state, rng_key, batch, jnp.zeros([]), is_training=True)
new_state = jax.tree_map(utils.mean_if_not_scalar, new_state)
new_state = utils.pmean_if_pmap(new_state, axis_name="i")
new_state = hk.data_structures.to_mutable_dict(new_state)
new_state = hk.data_structures.to_immutable_dict(new_state)
return jax.tree_map(jnp.add, new_state, state)
# _
# _____ ____ _| |
# / _ \ \ / / _` | |
# | __/\ V / (_| | |
# \___| \_/ \__,_|_|
#
def evaluate(self, global_step, rng, writer):
"""See base class."""
logging.info("Starting evaluation.")
if self.mode == "eval":
if self._eval_input is None:
self._initialize_eval()
self._initialize_eval_vpt()
key1, _ = utils.p_split(rng, 2)
stats = utils.to_numpy(self._eval_epoch(global_step, key1))
stats.update(utils.to_numpy(self._eval_epoch_vpt(global_step, rng)))
elif self.mode == "eval_metric":
if self._eval_input_metric is None:
self._initialize_eval_metric()
stats = utils.to_numpy(self._eval_epoch_metric(global_step, rng))
else:
raise NotImplementedError()
logging.info("Finished evaluation.")
return stats
def _eval_epoch(self, step, rng):
"""Evaluates an epoch."""
accumulator = utils.MultiBatchAccumulator()
for batch in self._eval_input():
rng, key = utils.p_split(rng, 2)
stats, num_samples = utils.get_first(
self._eval_batch(self._params, self._state, key, batch, step)
)
accumulator.add(stats, num_samples)
return accumulator.value()
def _eval_epoch_metric(self, step, rng):
"""Evaluates an epoch."""
# To prevent from calculating SyMetric early on in training where a large
# polynomial expansion is likely to be required and the score is likely
# to be bad anyway, we only compute using a single batch to save compute
if step[0] > self.config.evaluation_metric.calculate_fully_after_steps:
batch_n = self.config.evaluation_metric.batch_n
else:
batch_n = 1
logging.info("Step: %d, batch_n: %d", step[0], batch_n)
accumulator = utils.MultiBatchAccumulator()
for _ in range(self.config.evaluation_metric.batch_n):
batch = next(self._eval_input_metric)
rng, key = utils.p_split(rng, 2)
stats = self._eval_batch_metric(
self._params, key, batch,
eval_seq_len=self.config.evaluation_metric.num_eval_metric_steps,
)
accumulator.add(stats, 1)
stats = utils.flatten_dict(accumulator.value())
max_keys = ("sym", "SyMetric")
for k, v in utils.flatten_dict(accumulator.max()).items():
if any(m in k for m in max_keys):
stats[k + "_max"] = v
min_keys = ("sym", "SyMetric")
for k, v in utils.flatten_dict(accumulator.min()).items():
if any(m in k for m in min_keys):
stats[k + "_min"] = v
sum_keys = ("sym", "SyMetric")
for k, v in utils.flatten_dict(accumulator.sum()).items():
if any(m in k for m in sum_keys):
stats[k + "_sum"] = v
return stats
def _eval_epoch_vpt(self, step, rng):
"""Evaluates an epoch."""
accumulator = utils.MultiBatchAccumulator()
for _ in range(self.config.evaluation_vpt.batch_n):
batch = next(self._eval_input_vpt)
rng, key = utils.p_split(rng, 2)
stats = self._eval_batch_vpt(self._params, self._state, key, batch)
accumulator.add(stats, 1)
stats = utils.flatten_dict(accumulator.value())
return stats
def _reconstruct_and_align(self, rng_key, full_trajectory, prefix, suffix):
if hasattr(self.model, "training_data_split"):
if self.model.training_data_split == "overlap_by_one":
reconstruction_skip = self.model.num_inference_steps - 1
elif self.model.training_data_split == "no_overlap":
reconstruction_skip = self.model.num_inference_steps
elif self.model.training_data_split == "include_inference":
reconstruction_skip = 0
else:
raise NotImplementedError()
else:
reconstruction_skip = 1
full_forward_targets = jax.tree_map(
lambda x: x[:, :, reconstruction_skip:], full_trajectory)
full_backward_targets = jax.tree_map(
lambda x: x[:, :, :x.shape[2] - reconstruction_skip], full_trajectory)
train_targets_length = (self.model.train_sequence_length -
reconstruction_skip)
full_targets_length = full_forward_targets.shape[2]
# Fully unroll the model and reconstruct the whole sequence, take the mean
full_prediction = self._get_reconstructions(self._params, full_trajectory,
rng_key, prefix == "forward",
True).mean()
full_targets = (full_forward_targets if prefix == "forward" else
full_backward_targets)
# In cases where the model can run backwards it is possible to reconstruct
# parts which were indented to be skipped, so here we take care of that.
if full_prediction.mean().shape[2] > full_targets_length:
if prefix == "forward":
full_prediction = jax.tree_map(
lambda x: x[:, :, -full_targets_length:], full_prediction)
else:
full_prediction = jax.tree_map(
lambda x: x[:, :, :full_targets_length], full_prediction)
# Based on the prefix and suffix fetch correct predictions and targets
if prefix == "forward" and suffix == "train":
predict, targets = jax.tree_map(
lambda x: x[:, :, :train_targets_length],
(full_prediction, full_targets))
elif prefix == "forward" and suffix == "extrapolation":
predict, targets = jax.tree_map(
lambda x: x[:, :, train_targets_length:],
(full_prediction, full_targets))
elif prefix == "backward" and suffix == "train":
predict, targets = jax.tree_map(
lambda x: x[:, :, -train_targets_length:],
(full_prediction, full_targets))
elif prefix == "backward" and suffix == "extrapolation":
predict, targets = jax.tree_map(
lambda x: x[:, :, :-train_targets_length],
(full_prediction, full_targets))
else:
predict, targets = full_prediction, full_targets
return predict, targets
def _initialize_eval(self):
length = (self.model.train_sequence_length +
self.config.num_extrapolation_steps)
batch_size = self.config.evaluation.batch_size
self._eval_input = load_datasets.dataset_as_iter(
load_datasets.load_dataset,
path=self.config.dataset_folder,
tfrecord_prefix="test",
sub_sample_length=length,
per_device_batch_size=batch_size,
num_epochs=1,
drop_remainder=False,
shuffle=False,
cache=False,
keys_to_preserve=["image"]
)
self._eval_batch = jax.pmap(
self._jax_eval_step_fn, axis_name="i")
self._get_reconstructions = jax.pmap(
self.model.reconstruct, axis_name="i",
static_broadcasted_argnums=(3, 4))
if isinstance(self.model,
common.deterministic_vae.DeterministicLatentsGenerativeModel):
self._get_samples = jax.pmap(
self.model.sample_trajectories_from_prior,
static_broadcasted_argnums=(1, 3, 4))
def _initialize_eval_metric(self):
self._eval_input_metric = utils.py_prefetch(
load_datasets.dataset_as_iter(
load_datasets.load_dataset,
path=self.config.dataset_folder,
tfrecord_prefix="test",
sub_sample_length=None,
per_device_batch_size=self.config.evaluation_metric.batch_size,
num_epochs=None,
drop_remainder=False,
cache=False,
shuffle=False,
keys_to_preserve=["image", "x"]
)
)
def compute_gt_state_and_latents(*args):
# Note that the `dt` has to be passed as a kwargs argument
if len(args) == 4:
return self.model.gt_state_and_latents(*args[:4])
elif len(args) == 5:
return self.model.gt_state_and_latents(*args[:4], dt=args[4])
else:
raise NotImplementedError()
self._compute_gt_state_and_latents = jax.pmap(
compute_gt_state_and_latents, static_broadcasted_argnums=3)
def _initialize_eval_vpt(self):
dataset_name = self.config.dataset_folder.split("/")[-1]
dataset_folder = self.config.dataset_folder
if dataset_name in ("hnn_mass_spring_dt_0_05",
"mass_spring_colors_v1_dt_0_05",
"hnn_pendulum_dt_0_05",
"pendulum_colors_v1_dt_0_05",
"matrix_rps_dt_0_1",
"matrix_mp_dt_0_1"):
dataset_folder += "_long_trajectory"
self._eval_input_vpt = utils.py_prefetch(
load_datasets.dataset_as_iter(
load_datasets.load_dataset,
path=dataset_folder,
tfrecord_prefix="test",
sub_sample_length=None,
per_device_batch_size=self.config.evaluation_vpt.batch_size,
num_epochs=None,
drop_remainder=False,
cache=False,
shuffle=False,
keys_to_preserve=["image", "x"]
)
)
self._get_reconstructions = jax.pmap(
self.model.reconstruct, axis_name="i",
static_broadcasted_argnums=(3, 4))
def _jax_eval_step_fn(self, params, state, rng_key, batch, step):
# We care only about the statistics
_, (_, stats, _) = self.model.training_objectives(params, state, rng_key,
batch, step,
is_training=False)
# Compute the full batch size
batch_size = jax.tree_flatten(batch)[0][0].shape[0]
batch_size = utils.psum_if_pmap(batch_size, axis_name="i")
return self._process_stats(stats, axis_name="i"), batch_size
def _eval_batch_vpt(self, params, state, rng_key, batch):
full_trajectory = utils.extract_image(batch)
prefixes = ("forward",
"backward") if self.model.can_run_backwards else ("forward",)
stats = dict()
vpt_abs_scores = []
vpt_rel_scores = []
seq_length = None
for prefix in prefixes:
reconstruction, gt_images = self._reconstruct_and_align(
rng_key, full_trajectory, prefix, "extrapolation")
seq_length = gt_images.shape[2]
mse_norm = np.mean(
(gt_images - reconstruction)**2, axis=(3, 4, 5)) / np.mean(
gt_images**2, axis=(3, 4, 5))
vpt_scores = []
for i in range(mse_norm.shape[1]):
vpt_ind = np.argwhere(
mse_norm[:, i:i + 1, :] > self.config.evaluation_vpt.vpt_threshold)
if vpt_ind.shape[0] > 0:
vpt_ind = vpt_ind[0][2]
else:
vpt_ind = mse_norm.shape[-1]
vpt_scores.append(vpt_ind)
vpt_abs_scores.append(np.median(vpt_scores))
vpt_rel_scores.append(np.median(vpt_scores) / seq_length)
scores = {"vpt_abs": vpt_abs_scores[-1], "vpt_rel": vpt_rel_scores[-1]}
scores = utils.to_numpy(scores)
scores = utils.filter_only_scalar_stats(scores)
stats[prefix] = scores
stats["vpt_abs"] = utils.to_numpy(np.mean(vpt_abs_scores))
stats["vpt_rel"] = utils.to_numpy(np.mean(vpt_rel_scores))
logging.info("vpt_abs: %s, seq_length: %d}",
str(vpt_abs_scores), seq_length)
return stats
def _eval_batch_metric(self, params, rng, batch, eval_seq_len=200):
# Initialise alpha values for Lasso regression
alpha_sweep = np.logspace(self.config.evaluation_metric.alpha_min_logspace,
self.config.evaluation_metric.alpha_max_logspace,
self.config.evaluation_metric.alpha_step_n)
trajectory_n = self.config.evaluation_metric.batch_size
subsection = f"{trajectory_n}tr"
stats = dict()
# Get data
(gt_trajectory,
model_trajectory,
informative_dim_n) = self._get_gt_and_model_phase_space_for_eval(
params, rng, batch, eval_seq_len)
# Calculate SyMetric scores
if informative_dim_n > 1:
scores, *_ = eval_metric.calculate_symetric_score(
gt_trajectory,
model_trajectory,
self.config.evaluation_metric.max_poly_order,
self.config.evaluation_metric.max_jacobian_score,
self.config.evaluation_metric.rsq_threshold,
self.config.evaluation_metric.sym_threshold,
self.config.evaluation_metric.evaluation_point_n,
trajectory_n=trajectory_n,
weight_tolerance=self.config.evaluation_metric.weight_tolerance,
alpha_sweep=alpha_sweep,
max_iter=self.config.evaluation_metric.max_iter,
cv=self.config.evaluation_metric.cv)
scores["unmasked_latents"] = informative_dim_n
scores = utils.to_numpy(scores)
scores = utils.filter_only_scalar_stats(scores)
stats[subsection] = scores
else:
scores = {
"poly_exp_order":
self.config.evaluation_metric.max_poly_order,
"rsq":
0,
"sym":
self.config.evaluation_metric.max_jacobian_score,
"SyMetric": 0.0,
"unmasked_latents":
informative_dim_n
}
scores = utils.to_numpy(scores)
scores = utils.filter_only_scalar_stats(scores)
stats[subsection] = scores
return stats
def _get_gt_and_model_phase_space_for_eval(self, params, rng, batch,
eval_seq_len):
# Get data
gt_data, model_data, z0 = utils.stack_device_dim_into_batch(
self._compute_gt_state_and_latents(params, rng, batch, eval_seq_len)
)
if isinstance(self.model, AutoregressiveModel):
# These models return the `z` for the whole sequence
z0 = z0[:, 0]
# If latent space is image like, reshape it down to vector
if self.model.latent_system_net_type == "conv":
z0 = jax.tree_map(utils.reshape_latents_conv_to_flat, z0)
model_data = jax.tree_map(
lambda x: utils.reshape_latents_conv_to_flat(x, axis_n_to_keep=2),
model_data)
# Create mask to get rid of uninformative latents
latent_mask = eval_metric.create_latent_mask(z0)
informative_dim_n = np.sum(latent_mask)
model_data = model_data[:, :, latent_mask]
logging.info("Masking out model data, leaving dim_n=%d dimensions.",
model_data.shape[-1])
gt_trajectory = np.reshape(
gt_data,
[np.product(gt_data.shape[:-1]), gt_data.shape[-1]]
)
model_trajectory = np.reshape(model_data, [
np.product(model_data.shape[:-1]), model_data.shape[-1]
])
# Standardize data
gt_trajectory = eval_metric.standardize_data(gt_trajectory)
model_trajectory = eval_metric.standardize_data(model_trajectory)
return gt_trajectory, model_trajectory, informative_dim_n
if __name__ == "__main__":
flags.mark_flag_as_required("config")
logging.set_stderrthreshold(logging.INFO)
app.run(functools.partial(platform.main, HGNExperiment))