-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenus2euler.m
169 lines (154 loc) · 9.37 KB
/
genus2euler.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
This magma package file implements the algorithms described in the paper
Computing Euler factors of genus 2 curves over Q at primes of almost good reduction
by Celine Maistret and Andrew V. Sutherland
*/
lpoly3 := func<f|LPolynomial(EllipticCurve(Evaluate(f,Parent(f).1/c)*c^2)) where c:=LeadingCoefficient(f)>;
vc := func<g,p|v where v,_:=Valuation(LeadingCoefficient(g),p)>;
irred := func<d,R|&cat[[R|f:cc in CartesianPower(F,i)|IsIrreducible(f) where f:=R!([c:c in TupleToList(cc)] cat [F|1])]:i in [1..d]] where F:=BaseRing(R)>;
gcd := func<f,k|(Degree(f) lt Characteristic(BaseRing(R)) select GCD([Derivative(f,i):i in [0..k-1]])
else &*[R|g^(Valuation(f,g)-k+1):g in irred(Degree(f) div k,R)|Valuation(f,g) ge k]) where R:=Parent(f)>;
gcd3 := func<f|gcd(f,3)>; gcd5 := func<f|gcd(f,5)>; gcd6 := func<f|gcd(f,6)>;
// Implementation of Algorithm 3 (type 1) in the paper
function Type1(f,p)
ZZ := Integers(); R<T> := PolynomialRing(ZZ); Fp:=GF(p); Rp<t>:=PolynomialRing(Fp); f:=R!f; fp := ChangeRing(f,Fp);
gp := gcd3(fp); assert Degree(gp) eq 1;
fp := Evaluate(fp,t-Coefficient(gp,0)); // fp(t+r) is a sextic divisible by t^3
L := [lpoly3(Rp![Coefficient(fp,6-i):i in [0..3]])]; // Reverse coefficients of fp(t+r)/t^2 to get a cubic
r := ZZ!-Coefficient(gp,0); i := 1;
while true do
f := ExactQuotient(Evaluate(f,p*T+r),p^3); fp := ChangeRing(f,Fp); assert Degree(fp) eq 3;
if IsEven(i) and Discriminant(fp) ne 0 then L[2] := lpoly3(fp); break; end if; // per Remark 4.7, we only check even i
gp := gcd3(fp); assert Degree(gp) eq 1;
r := ZZ!-Coefficient(gp,0); i +:= 1;
end while;
return R!&*L;
end function;
// Implementation of Algorithm 4 (type 2a) in the paper
function Type2a(f,p)
ZZ:=Integers(); R<T>:=PolynomialRing(ZZ); Fp:=GF(p); Rp<t>:=PolynomialRing(Fp); f:=R!f;
f := vc(f,p) eq 1 select ExactQuotient(f,p) else f; fp := ChangeRing(f,Fp);
gp := gcd3(fp); assert Degree(gp) eq 2;
d := SquareRoot(Discriminant(gp)); // non-deterministic step that can be made deterministic given a non-residue
rr := [Fp|(-b + d)/2,(-b-d)/2] where b:=Coefficient(gp,1);
L := []; f0 := f;
for i:=1 to 2 do
r := ZZ!rr[i]; f := f0;
while true do
f := ExactQuotient(Evaluate(f,p*T+r),p^3); fp := ChangeRing(f,Fp); assert Degree(fp) eq 3;
if Discriminant(fp) ne 0 then L[i] := lpoly3(fp); break; end if;
gp := gcd3(fp); assert Degree(gp) eq 1;
r := ZZ!-Coefficient(gp,0);
end while;
end for;
return R!&*L;
end function;
// Implementation of Algorithm 5 (type 2b) in the paper
function Type2b(f,p)
ZZ:=Integers(); R<T>:=PolynomialRing(ZZ); Fp:=GF(p); Rp<t>:=PolynomialRing(Fp); f:=R!f;
f := vc(f,p) eq 1 select ExactQuotient(f,p) else f; fp := ChangeRing(f,Fp);
up := gcd3(fp); assert Degree(up) eq 2; u := ChangeRing(up,Integers());
K<Z> := quo<R|u>; Kp<z> := quo<Rp|up>; RK<T> := PolynomialRing(K); RKp<t> := PolynomialRing(Kp);
RKdiv := func<f,d|RK![K![ExactQuotient(c,d):c in Coefficients(fc)]:fc in Coefficients(f)]>;
RKmod := func<f|RKp![Evaluate(c,z):c in Coefficients(f)]>; Klift := func<a|K!Eltseq(a)>;
Fp2 := ext<Fp|up>; Rp2 := PolynomialRing(Fp2); Fp2poly := func<g|Rp2![Fp2!Eltseq(c):c in Coefficients(g)]>;
f := RK!f; r := Z; L := 0;
while true do
f := RKdiv(Evaluate(f,p*T+r),p^3); fp := RKmod(f); assert Degree(fp) eq 3;
if Discriminant(fp) ne 0 then L := lpoly3(Fp2poly(fp)); break; end if;
gp := gcd3(fp); assert Degree(gp) eq 1;
r := Klift(-Coefficient(gp,0));
end while;
return Evaluate(L,T^2);
end function;
// Implementation of Algorithm 6 (type 4) in the paper
function Type4(f,p)
ZZ := Integers(); R<T> := PolynomialRing(ZZ); Fp:=GF(p); Rp<t> := PolynomialRing(Fp); f:=R!f;
f := IsDivisibleBy(f,p) select ExactQuotient(f,p) else f; fp := ChangeRing(f,Fp);
gp := gcd5(fp); assert Degree(gp) eq 1;
r := ZZ!-Coefficient(gp,0); L := [];
while true do
f := ExactQuotient(Evaluate(f,p*T+r),p^5); fp := ChangeRing(f,Fp); assert Degree(fp) eq 5;
gp := gcd3(fp);
if Degree(gp) eq 1 then
r := ZZ!-Coefficient(gp,0);
gp := ExactQuotient(fp,gp^2); assert Discriminant(gp) ne 0;
L := [lpoly3(gp)]; break;
end if;
gp := gcd5(fp); assert Degree(gp) eq 1;
r := ZZ!-Coefficient(gp,0);
end while;
while true do
f := ExactQuotient(Evaluate(f,p*T+r),p^3); fp := ChangeRing(f,Fp); assert Degree(fp) eq 3;
if Discriminant(fp) ne 0 then L[2] := lpoly3(fp); break; end if;
gp := gcd3(fp); assert Degree(gp) eq 1;
r := ZZ!-Coefficient(gp,0);
end while;
return &*L;
end function;
// Implementation of Algorithm 2 (which type) in the paper
function WhichType(f,p)
assert Degree(f) eq 6 and p gt 2;
ZZ := Integers(); R<T> := PolynomialRing(ZZ); Fp:=GF(p); Rp<t> := PolynomialRing(Fp); f := R!f;
fp := ChangeRing(vc(f,p) gt 0 select ExactQuotient(f,p^vc(f,p)) else f,Fp);
gp := gcd3(fp); assert Degree(gp) in [1,2,3];
if Degree(gp) eq 2 then return (IsSquare(Discriminant(gp)) select 2 else 3), gp; end if;
return (Degree(gp) eq 1 select 1 else 4), gp; // Degree(gp) eq 3 in type 4 case
end function;
// Implementation of Algorithm 1 (normalize) in the paper
function Normalize(f,p)
assert Degree(f) ge 5 and p gt 2;
ZZ := Integers(); R<T> := PolynomialRing(ZZ); Fp:=GF(p); Rp<t> := PolynomialRing(Fp); f := R!f;
if Degree(f) lt 6 then
while Coefficient(f,0) eq 0 do f:=Evaluate(f,T+1); end while;
f := R![Coefficient(f,6-i):i in [0..6]]; assert Degree(f) eq 6;
end if;
v := vc(f,p);
if v gt 1 or v gt Min([Valuation(Coefficient(f,i),p):i in [0..5]]) then
e := Max([Ceiling((v-Valuation(Coefficient(f,i),p))/(6-i)):i in [0..5]]);
f := R![p^((6-i)*e-w)*Coefficient(f,i):i in [0..6]] where w := 2*(v div 2); v := vc(f,p);
end if;
h := ExactQuotient(f,p^v);
while true do
up := gcd6(ChangeRing(h,Fp)); if Degree(up) eq 0 then break; end if;
h := ExactQuotient(Evaluate(h,p*T+r),p^6) where r:=ZZ!-Coefficient(up,0);
end while;
return p^v*h;
end function;
// Implementation of Algorithm 7 (main) in the paper as a Magma intrinsic
intrinsic Genus2AlmostGoodEulerFactor(f::RngUPolElt[RngInt],p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C:y^2=f(x) at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
require Degree(f) in [5,6]: "f should be a squarefree polynomial of degree 5 or 6"; // we don't verify that f is squarefree
if p eq 2 then return EulerFactor(HyperellipticCurve(f),p); end if; // revert to Magma for p=2
f := Normalize(f,p);
n := WhichType(f,p);
if WhichTypeOnly then return n; end if;
if n eq 1 then return Type1(f,p);
elif n eq 2 then return Type2a(f,p); // we use 2 to indicate 2a
elif n eq 3 then return Type2b(f,p); // we use 3 to indicate 2b
elif n eq 4 then return Type4(f,p);
end if;
assert false; // we should never reach this line
end intrinsic;
// The intrinsics below provide polymorphic interfaces to the Genus2GoodEulerFactor intrinsic above
intrinsic Genus2AlmostGoodEulerFactor(f::RngUPolElt[FldRat],p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C:y^2=f(x) at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
return Genus2AlmostGoodEulerFactor(ChangeRing(f,Integers()),p:WhichTypeOnly:=WhichTypeOnly);
end intrinsic;
intrinsic Genus2AlmostGoodEulerFactor(f::SeqEnum[RngIntElt],p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C:y^2=f(x) specified by coeffs(f) at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
return Genus2AlmostGoodEulerFactor(R!f,p:WhichTypeOnly:=WhichTypeOnly) where R:=PolynomialRing(Integers());
end intrinsic;
intrinsic Genus2AlmostGoodEulerFactor(fh::SeqEnum[SeqEnum[RngIntElt]],p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C:y^2+h(x)y=f(x) specified by [coeffs(f),coeffs(h)] at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
require #fh eq 2: "Expected a list of lists of coefficients [coeffs(f),coeffs(h)] for genus 2 curve y^2+h(x)y=f(x).";
return Genus2AlmostGoodEulerFactor(4*R!fh[1]+(R!fh[2])^2,p:WhichTypeOnly:=WhichTypeOnly) where R:= PolynomialRing(Integers());
end intrinsic;
intrinsic Genus2AlmostGoodEulerFactor(fh::SeqEnum[RngUPolElt],p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C:y^2+h(x)y=f(x) specified by [f,h] at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
return Genus2AlmostGoodEulerFactor([Coefficients(f):f in fh],p:WhichTypeOnly:=WhichTypeOnly);
end intrinsic;
intrinsic Genus2AlmostGoodEulerFactor(C::CrvHyp,p::RngIntElt:WhichTypeOnly:=false) -> RngUPolElt[RngInt], RngIntElt
{ returns the Euler factor of the genus 2 curve C at an odd prime of almost good reduction (bad for C but, good for Jac(C)). }
return Genus2AlmostGoodEulerFactor([ChangeRing(f,Integers()),ChangeRing(h,Integers())],p:WhichTypeOnly:=WhichTypeOnly) where f,h := HyperellipticPolynomials(C);
end intrinsic;