-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFIRNotch.m
203 lines (162 loc) · 4.42 KB
/
FIRNotch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
% Owner
% Anirban Majumder
% Git : https://github.com/AnirbanHFX
% Provided as is
%%
clear all;
%%
% Parameters of the filter
Fs = 250;
f0 = 50;
alpha = 1;
M = 32;
N = floor(M/2+1);
inplen = 500;
Wt = 200;
epsilon = 0;
w0 = 2*pi*f0/Fs;
a = 2*pi*alpha/Fs;
%%
% Calculation of Q and P matrices
% Q = integral(UU^t)|w=(0,w0-a) + integral(Wt*UU^t)|w=(w0-a,w0+a) + integral(UU^t)|w=(w0+a,pi)
% P = integral(-2U)|w=(0,w0-a) + integral(Wt*epsilon*(-2U))|w=(w0-a,w0+a) + integral(-2U)|w=(w0+a,pi)
Q = zeros(N, N);
for i=1:N % Calculation of symmetric Q matrix
for j=1:N
Q(i, j) = integral(@(x) cos((i-1)*x).*cos((j-1)*x), 0, w0-a) + integral(@(x) Wt*cos((i-1)*x).*cos((j-1)*x), w0-a, w0+a) + integral(@(x) cos((i-1)*x).*cos((j-1)*x), w0+a, pi);
end
end
P = zeros(N, 1);
for i=1:N % Calculation of P matrix
P(i, 1) = -2*integral(@(x) cos((i-1)*x), 0, w0-a) - 2*epsilon*Wt*integral(@(x) cos((i-1)*x), w0-a, w0+a) - 2*integral(@(x) cos((i-1)*x), w0+a, pi);
end
%%
% Fixed point parameters
wordlen = 16;
fraclen = 8;
signed = 1;
%%
% Determine filter coefficients using Particle Swarm Optimization
% PSO parameters
args.wl = wordlen;
args.fl = fraclen;
args.Q = Q;
args.P = P;
args.iMax = 400;
args.PopSize = 200;
args.c1 = 2;
args.c2 = 2;
args.b = 0.99;
args.w = 1;
args.dim = 2; % Particles modelled as a column vector [a1 b1; a2 b2; a3 b3; ...] where a = mantissa (signed 8 bit integer), b = fractional part (unsigned 8 bit integer)
args.order = M/2+1; % Number of rows for each particle
range.maxP = [];
range.minP = [];
args.range = repmat(range, args.dim, 1);
args.range(1).maxP = 2^(wordlen-fraclen-1)-1;
args.range(1).minP = -2^(wordlen-fraclen-1);
args.range(2).maxP = 2^(fraclen)-1;
args.range(2).minP = 0;
% Execute PSO
PSO_Out = PSO_fp(args); % X calculated using PSO
while(PSO_Out.cost > -2.6) % Retry if PSO fails to converge
PSO_Out.cost
disp("failed to converge, retrying")
PSO_Out = PSO_fp(args); % X calculated using PSO
end
X_PSO = PSO_Out.X;
%%
% Calculate X using Gaussian inversion of Q
X = -0.5*(Q\P); % X calculated using Gaussian elimination
%%
% Calculate filter coefficients from X and X_PSO
h = zeros(1, M+1);
h(1, N) = X(1, 1);
for k=1:M/2
h(1, N-k) = 0.5*X(k+1, 1);
h(1, N+k) = 0.5*X(k+1, 1); % Filter coefficients from X
end
figure(1) % Response of Gaussian Inversion filter
hold on;
freqz(h);
title('Fitler using Gaussian Inversion');
hold off;
h_PSO = zeros(1, M+1);
h_PSO(1, N) = X_PSO(1, 1);
for k=1:M/2
h_PSO(1, N-k) = 0.5*X_PSO(k+1, 1);
h_PSO(1, N+k) = 0.5*X_PSO(k+1, 1); % Filter coefficients from PSO
end
h_d = double(h_PSO);
figure(2) % Response of PSO filter
hold on
freqz(h_d);
title('Filter using PSO');
hold off
h_PSO = fi(h_PSO, signed, wordlen, fraclen);
h_fx = fi(h, signed, wordlen, fraclen);
%%
% Load data from EEG signal
load('eegdata.mat')
IP = data{1}{4}(1,1:inplen); % EEG Signal
IP_fx = fi(IP, signed, wordlen, fraclen);
%%
% Convolve input with h and h_PSO
OP_fx = fi(zeros(1, inplen+M), signed, wordlen, fraclen);
for i=1:inplen+M
for j=1:M+1
if i-j+1 >= 1 & i-j+1 <= inplen
OP_fx(1, i) = OP_fx(1, i) + IP_fx(1, i-j+1)*h_fx(j); % Convolution
end
end
end
OP_fx_PSO = fi(zeros(1, inplen+M), signed, wordlen, fraclen);
for i=1:inplen+M
for j=1:M+1
if i-j+1 >= 1 & i-j+1 <= inplen
OP_fx_PSO(1, i) = OP_fx_PSO(1, i) + IP_fx(1, i-j+1)*h_PSO(j);
end
end
end
%%
% Write fixed point filter coefficients to external text file for both filters (Gaussian elimination and PSO)
file1 = fopen('filter_gauss.txt', 'w');
for i=1:length(h_fx)
fp = h_fx(1, i);
if i < length(h_fx)
fprintf(file1, '0x%s, ', fp.hex);
else
fprintf(file1, '0x%s', fp.hex);
end
end
fclose(file1);
file2 = fopen('filter_pso.txt', 'w');
for i=1:length(h_PSO)
fp = fi(h_PSO(1, i), signed, wordlen, fraclen);
if i < length(h_PSO)
fprintf(file2, '0x%s, ', fp.hex);
else
fprintf(file2, '0x%s', fp.hex);
end
end
fclose(file2);
%%
% Plot frequency response of input and output with both filters
figure(3)
hold on;
freqz(IP);
title('Input signal');
hold off;
temp = double(OP_fx);
figure(4)
hold on;
freqz(temp);
title('Output signal using Gaussian filter');
hold off;
temp = double(OP_fx_PSO);
figure(5)
hold on;
freqz(temp);
title('Output signal using PSO filter');
hold off;
%%