-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmusicRecommender.py
167 lines (136 loc) · 6.26 KB
/
musicRecommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Anita Soroush
import sys
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
import os
import csv
def music_recommender(userPreferences):
raw_data = pd.read_csv('genres_v2.csv', dtype={'song_name': 'str'})
print(raw_data.shape)
pd.set_option('display.max_columns', None)
raw_data.info()
# data cleaning --------------------------------------------------------------------------------------
nulls = raw_data.isnull().sum()
print(nulls)
training_data = raw_data.drop(['type', 'uri', 'track_href', 'analysis_url',
'song_name', 'Unnamed: 0', 'title', 'genre'], axis=1, inplace=False)
print(training_data.shape)
training_data = training_data[training_data.key != -1]
print("after dropping some rows:\n", training_data.shape)
print(training_data.head())
print(training_data.shape)
print(training_data.duplicated().any())
training_data.drop_duplicates(inplace=True)
print(training_data.shape)
training_data.hist()
plt.show()
# this global scalar will be fitted on training data and will be used for both training and test data
global_scalar = MinMaxScaler()
id_column = training_data['id']
training_data.drop(['id'], axis=1, inplace=True)
global_scalar.fit(training_data)
training_data = pd.DataFrame(global_scalar.transform(training_data),
index=training_data.index,
columns=training_data.columns)
training_data['id'] = id_column
training_data.hist()
plt.show()
training_data.info()
corr = training_data.corr()
sns.heatmap(corr[corr > 0.1], cmap="Blues", annot=True)
plt.show()
# clustering ----------------------------------------------------------------------------------------
wcss = []
for i in range(1, 20):
kmeans = KMeans(i)
kmeans.fit(training_data.drop(['id'], axis=1, inplace=False))
wcss_iter = kmeans.inertia_
wcss.append(wcss_iter)
number_clusters = range(1, 20)
plt.plot(number_clusters, wcss)
plt.title('The Elbow title')
plt.xlabel('Number of clusters')
plt.ylabel('SSE')
plt.show()
kmeans = KMeans(n_clusters=10)
training_data_clustered = kmeans.fit(training_data.drop(['id'], axis=1, inplace=False))
training_data["cluster"] = training_data_clustered.labels_
centroids = training_data_clustered.cluster_centers_
print(training_data.head())
# making output...........................................................................................
userPreferences.drop(userPreferences.columns.difference(["danceability", "energy", "key", "loudness", "mode",
"speechiness", "acousticness", "instrumentalness",
"liveness", "valence", "tempo", "duration_ms",
"time_signature"]), 1, inplace=True)
# input normalizing
userPreferences = pd.DataFrame(global_scalar.transform(userPreferences),
index=userPreferences.index,
columns=userPreferences.columns)
fields = ["id", "cluster"]
# single playlist
single_playlist = []
for i in range(5):
cluster_index = (training_data_clustered.predict(userPreferences.iloc[[i]]))[0]
print(cluster_index)
cluster_songs = training_data[training_data.cluster == cluster_index]
cluster_songs.drop(cluster_songs.columns.difference(["id", "cluster"]), 1, inplace=True)
single_playlist.append((cluster_songs.sample()).values.flatten().tolist())
print(single_playlist[i])
filename = "single_playlist.csv"
# writing to csv file
with open(filename, 'w') as csvfile:
# creating a csv writer object
csvwriter = csv.writer(csvfile)
# writing the fields
csvwriter.writerow(fields)
# writing the data rows
csvwriter.writerows(single_playlist)
# 5 playlists
for i in range(5):
ith_playlist = []
filename = "pl" + str(i + 1) + ".csv"
cluster_index = (training_data_clustered.predict(userPreferences.iloc[[i]]))[0]
cluster_songs = training_data[training_data.cluster == cluster_index]
cluster_songs.drop(cluster_songs.columns.difference(["id", "cluster"]), 1, inplace=True)
for j in range(5):
ith_playlist.append((cluster_songs.sample()).values.flatten().tolist())
with open(filename, 'w') as csvfile:
# creating a csv writer object
csvwriter = csv.writer(csvfile)
# writing the fields
csvwriter.writerow(fields)
# writing the data rows
csvwriter.writerows(ith_playlist)
def main(args) -> None:
""" Main function to be called when the script is run from the command line.
This function will recommend songs based on the user's input and save the
playlist to a csv file.
Parameters
----------
args: list
list of arguments from the command line (here is just the path of a file like input_tracks.csv)
Returns
-------
None
"""
arg_list = args[1:]
if len(arg_list) == 0:
print("Usage: python3 musicRecommender.py <csv file>")
sys.exit()
else:
file_name = arg_list[0]
if not os.path.isfile(file_name):
print("File does not exist")
sys.exit()
else:
userPreferences = pd.read_csv(file_name)
music_recommender(userPreferences)
if __name__ == "__main__":
"""get arguments from command line
you just have to write the name of the file that contains the users favorite tracks.
these tracks are now in input_tracks.csv """
args = sys.argv
main(args)