-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabcd.py
63 lines (54 loc) · 1.93 KB
/
abcd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from __future__ import print_function
import numpy
import torch.utils.data as data
import torch
import random
class Classification(data.Dataset):
def __init__(self,vec,gt,sigma=0):
self.vec=vec
self.label=gt
self.sigma=sigma
def __getitem__(self, index: int):
feat=self.vec[index]
label = self.label[index]
# if self.sigma[0]>0 and label>0:
# noise=numpy.random.normal(0,self.sigma,feat.shape)
# feat+=noise
feat = torch.tensor(feat.T, dtype=torch.float)
label = torch.tensor(label, dtype=torch.float)
return feat,label
def __len__(self) -> int:
return len(self.vec)
class Classification_sample(data.Dataset):
def __init__(self,vec,gt,num_classes):
self.vec=vec
self.label=gt
self.num_classes=num_classes
def __getitem__(self, index: int):
sample_class = random.randint(0, self.num_classes - 1)
sample_indexes=numpy.where(self.label==sample_class)[0]
index = random.choice(sample_indexes)
feat=self.vec[index]
label = self.label[index]
feat = torch.tensor(feat.T, dtype=torch.float)
label = torch.tensor(label, dtype=torch.float)
return feat,label
def __len__(self) -> int:
return int(len(self.vec)/20)
class Classification_sample1(data.Dataset):
def __init__(self,vec,gt,num_min=370):
self.vec=vec
self.label=gt
self.num_min=num_min
def __getitem__(self, index: int):
sample_class = index%3
sample_indexes=numpy.where(self.label==sample_class)[0]
#index = random.choice(sample_indexes)
index = sample_indexes[index//3]
feat=self.vec[index]
label = self.label[index]
feat = torch.tensor(feat.T, dtype=torch.float)
label = torch.tensor(label, dtype=torch.float)
return feat,label
def __len__(self) -> int:
return self.num_min*3