From 5ea3783b661b832c6a36300ffeb94ab3781dbe35 Mon Sep 17 00:00:00 2001 From: wahadameh Date: Mon, 28 Oct 2024 15:32:45 +0100 Subject: [PATCH] Refactoring ts_generator.py (adding link capacity class) --- README.md | 3 +- src/antares/tsgen/cluster_import.py | 23 +- src/antares/tsgen/ts_generator.py | 300 +- tests/output/geometric_law_distrib.png | Bin 19300 -> 19300 bytes tests/output/test_100_unit_cluster.csv | 8914 +++++++++++++++++++++++- tests/output/test_high_por_cluster.csv | 8764 ++++++++++++++++++++++- tests/output/test_one_unit_cluster.csv | 8764 ++++++++++++++++++++++- tests/output/uniform_law_distrib.png | Bin 14388 -> 14388 bytes tests/test.py | 2 +- tests/test_ts_generator.py | 14 +- tests/test_unit.py | 212 +- 11 files changed, 26691 insertions(+), 305 deletions(-) diff --git a/README.md b/README.md index 6d874fe..cdbc16a 100644 --- a/README.md +++ b/README.md @@ -41,9 +41,10 @@ rng = MersenneTwisterRNG() ``` Then perform the timeseries generation: + ```python generator = ThermalDataGenerator(rng=rng, days=days) -results = generator.generate_time_series(cluster, 1) +results = generator.generate_time_series_for_clusters(cluster, 1) ``` The actual timeseries for the total available power of the cluster are available in diff --git a/src/antares/tsgen/cluster_import.py b/src/antares/tsgen/cluster_import.py index 67af230..0771888 100644 --- a/src/antares/tsgen/cluster_import.py +++ b/src/antares/tsgen/cluster_import.py @@ -14,7 +14,7 @@ import numpy as np -from .ts_generator import ProbabilityLaw, ThermalCluster +from .ts_generator import ProbabilityLaw, ThermalCluster, OutageGenerationParameters def import_thermal_cluster(path: Path, days_per_year: int = 365) -> ThermalCluster: @@ -24,18 +24,21 @@ def import_thermal_cluster(path: Path, days_per_year: int = 365) -> ThermalClust } array = np.genfromtxt(path, delimiter=",", dtype=str) hourly_modulation = np.tile(array[3][1 : 24 + 1].astype(int), 365) - return ThermalCluster( + outage_gen_params = OutageGenerationParameters( unit_count=int(array[1][1]), - nominal_power=float(array[2][1]), - modulation=hourly_modulation, fo_law=law_dict[array[4][1]], fo_volatility=float(array[5][1]), po_law=law_dict[array[6][1]], po_volatility=float(array[7][1]), - fo_duration=array[8][1 : days_per_year + 1].astype(int), - fo_rate=array[9][1 : days_per_year + 1].astype(float), - po_duration=array[10][1 : days_per_year + 1].astype(int), - po_rate=array[11][1 : days_per_year + 1].astype(float), - npo_min=array[12][1 : days_per_year + 1].astype(int), - npo_max=array[13][1 : days_per_year + 1].astype(int), + fo_duration=array[8][1: days_per_year + 1].astype(int), + fo_rate=array[9][1: days_per_year + 1].astype(float), + po_duration=array[10][1: days_per_year + 1].astype(int), + po_rate=array[11][1: days_per_year + 1].astype(float), + npo_min=array[12][1: days_per_year + 1].astype(int), + npo_max=array[13][1: days_per_year + 1].astype(int), + ) + return ThermalCluster( + outage_gen_params, + nominal_power=float(array[2][1]), + modulation=hourly_modulation, ) diff --git a/src/antares/tsgen/ts_generator.py b/src/antares/tsgen/ts_generator.py index eac381b..0115641 100644 --- a/src/antares/tsgen/ts_generator.py +++ b/src/antares/tsgen/ts_generator.py @@ -11,10 +11,11 @@ # This file is part of the Antares project. from dataclasses import dataclass -from typing import Tuple +from typing import Tuple, Any import numpy as np import numpy.typing as npt +from numpy import ndarray, dtype from antares.tsgen.duration_generator import ProbabilityLaw, make_duration_generator from antares.tsgen.random_generator import RNG, MersenneTwisterRNG @@ -22,19 +23,14 @@ # probabilities above FAILURE_RATE_EQ_1 are considered certain (equal to 1) FAILURE_RATE_EQ_1 = 0.999 - IntArray = npt.NDArray[np.int_] FloatArray = npt.NDArray[np.float_] -@dataclass -class ThermalCluster: +@dataclass() +class OutageGenerationParameters: # available units of the cluster unit_count: int - # nominal power - nominal_power: float - # modulation of the nominal power for a certain hour in the day (between 0 and 1) - modulation: IntArray # forced and planed outage parameters # indexed by day of the year @@ -52,10 +48,56 @@ class ThermalCluster: po_law: ProbabilityLaw po_volatility: float + def __post_init__(self) -> None: + _check_outage_gen_params(self) + + +@dataclass +class ThermalCluster: + # available units of the cluster + #unit_count: int + outage_gen_params: OutageGenerationParameters + # nominal power + nominal_power: float + # modulation of the nominal power for a certain hour in the day (between 0 and 1) + modulation: IntArray + + # forced and planed outage parameters + # indexed by day of the year + #fo_duration: IntArray + #fo_rate: FloatArray + #po_duration: IntArray + #po_rate: FloatArray + #npo_min: IntArray # number of planed outage min in a day + #npo_max: IntArray # number of planed outage max in a day + + # forced and planed outage probability law and volatility + # volatility characterizes the distance from the expect at which the value drawn can be + #fo_law: ProbabilityLaw + #fo_volatility: float + #po_law: ProbabilityLaw + #po_volatility: float + def __post_init__(self) -> None: _check_cluster(self) +@dataclass +class LinkCapacity: + #outage generation parameters + outage_gen_params: OutageGenerationParameters + + #nominal capacity + nominal_capacity: float + + #direct / indirect modulation of the nominal capacity + modulation_direct: FloatArray + modulation_indirect: FloatArray + + def __post_init__(self) -> None: + _check_link_capacity(self) + + def _check_1_dim(array: npt.NDArray, name: str) -> None: if array.ndim != 1: raise ValueError(f"{name} must be a 1 dimension array.") @@ -66,49 +108,91 @@ def _check_array(condition: npt.NDArray[np.bool_], message: str) -> None: raise ValueError(f"{message}: {condition.nonzero()[0].tolist()}") +def _check_outage_gen_params(outage_gen_params: OutageGenerationParameters) -> None: + if outage_gen_params.unit_count <= 0: + raise ValueError(f"Unit count must be strictly positive, got {outage_gen_params.unit_count}.") + if outage_gen_params.fo_volatility < 0: + raise ValueError(f"Forced outage volatility must be positive, got {outage_gen_params.unit_count}.") + if outage_gen_params.po_volatility < 0: + raise ValueError(f"Planned outage volatility must be positive, got {outage_gen_params.unit_count}.") + + _check_1_dim(outage_gen_params.fo_rate, "Forced outage failure rate") + _check_1_dim(outage_gen_params.fo_duration, "Forced outage duration") + _check_1_dim(outage_gen_params.po_rate, "Planned failure rate") + _check_1_dim(outage_gen_params.po_duration, "Planned outage duration") + _check_1_dim(outage_gen_params.npo_min, "Minimum count of planned outages") + _check_1_dim(outage_gen_params.npo_max, "Maximum count of planned outages") + + _check_array(outage_gen_params.fo_rate < 0, "Forced failure rate is negative on following days") + _check_array(outage_gen_params.fo_rate > 1, "Forced failure rate is greater than 1 on following days") + _check_array(outage_gen_params.fo_duration <= 0, "Forced outage duration is null or negative on following days") + _check_array(outage_gen_params.po_rate < 0, "Planned failure rate is negative on following days") + _check_array(outage_gen_params.po_rate > 1, "Planned failure rate is greater than 1 on following days") + _check_array(outage_gen_params.po_duration <= 0, "Planned outage duration is null or negative on following days") + + def _check_cluster(cluster: ThermalCluster) -> None: - if cluster.unit_count <= 0: - raise ValueError(f"Unit count must be strictly positive, got {cluster.unit_count}.") if cluster.nominal_power <= 0: raise ValueError(f"Nominal power must be strictly positive, got {cluster.nominal_power}.") - if cluster.fo_volatility < 0: - raise ValueError(f"Forced outage volatility must be positive, got {cluster.unit_count}.") - if cluster.po_volatility < 0: - raise ValueError(f"Planned outage volatility must be positive, got {cluster.unit_count}.") - - _check_1_dim(cluster.fo_rate, "Forced outage failure rate") - _check_1_dim(cluster.fo_duration, "Forced outage duration") - _check_1_dim(cluster.po_rate, "Planned failure rate") - _check_1_dim(cluster.po_duration, "Planned outage duration") - _check_1_dim(cluster.npo_min, "Minimum count of planned outages") - _check_1_dim(cluster.npo_max, "Maximum count of planned outages") + + _check_outage_gen_params(cluster.outage_gen_params) + _check_1_dim(cluster.modulation, "Hourly modulation") + if len(cluster.modulation) != 8760: raise ValueError("hourly modulation array must have 8760 values.") - _check_array(cluster.fo_rate < 0, "Forced failure rate is negative on following days") - _check_array(cluster.fo_rate > 1, "Forced failure rate is greater than 1 on following days") - _check_array(cluster.fo_duration <= 0, "Forced outage duration is null or negative on following days") - _check_array(cluster.po_rate < 0, "Planned failure rate is negative on following days") - _check_array(cluster.po_rate > 1, "Planned failure rate is greater than 1 on following days") - _check_array(cluster.po_duration <= 0, "Planned outage duration is null or negative on following days") _check_array(cluster.modulation < 0, "Hourly modulation is negative on following hours") lengths = { len(a) for a in [ - cluster.fo_rate, - cluster.fo_duration, - cluster.po_rate, - cluster.po_duration, - cluster.npo_min, - cluster.npo_max, + cluster.outage_gen_params.fo_rate, + cluster.outage_gen_params.fo_duration, + cluster.outage_gen_params.po_rate, + cluster.outage_gen_params.po_duration, + cluster.outage_gen_params.npo_min, + cluster.outage_gen_params.npo_max, ] } if len(lengths) != 1: raise ValueError(f"Not all daily arrays have same size, got {lengths}") +def _check_link_capacity(link_capacity: LinkCapacity): + if link_capacity.nominal_capacity <= 0: + raise ValueError(f" {link_capacity.nominal_capacity}.") + if len(link_capacity.modulation_direct) < 0: + raise ValueError(f" {link_capacity.modulation_direct}.") + if len(link_capacity.modulation_indirect) < 0: + raise ValueError(f" {link_capacity.modulation_indirect}.") + + _check_outage_gen_params(link_capacity.outage_gen_params) + + _check_1_dim(link_capacity.modulation_indirect, "Direct modulation") + _check_1_dim(link_capacity.modulation_indirect, "Indirect hourly modulation") + + if len(link_capacity.modulation_direct) != 8760 and len(link_capacity.modulation_indirect) != 8760: + raise ValueError("hourly modulation array must have 8760 values.") + + _check_array(link_capacity.modulation_direct < 0, "Hourly direct modulation is negative on following hours") + _check_array(link_capacity.modulation_indirect < 0, "Hourly indirect modulation is negative on following hours") + + lengths = { + len(a) + for a in [ + link_capacity.outage_gen_params.fo_rate, + link_capacity.outage_gen_params.fo_duration, + link_capacity.outage_gen_params.po_rate, + link_capacity.outage_gen_params.po_duration, + link_capacity.outage_gen_params.npo_min, + link_capacity.outage_gen_params.npo_max, + ] + } + if len(lengths) != 1: + raise ValueError(f"Not all daily arrays have same size, got {lengths}") + +#OutputTimeseries -> class OutputTimeseries: def __init__(self, ts_count: int, days: int) -> None: self.available_units = np.zeros(shape=(days, ts_count), dtype=int) @@ -253,10 +337,86 @@ def __init__(self, rng: RNG = MersenneTwisterRNG(), days: int = 365) -> None: self.rng = rng self.days = days - def generate_time_series( - self, - cluster: ThermalCluster, - number_of_timeseries: int, + def _compare_apparent_PO( + self, + current_available_units: int, + po_candidates: int, + stock: int + ): + candidate = po_candidates + stock + if 0 <= candidate <= current_available_units: + po_candidates = candidate + stock = 0 + if candidate > current_available_units: + po_candidates = current_available_units + stock = candidate - current_available_units + if candidate < 0: + po_candidates = 0 + stock = candidate + return po_candidates, stock + + def _generate_outages( + self, + outage_gen_params: OutageGenerationParameters, + log, + log_size, + logp, + number_of_timeseries, + output + ): + daily_fo_rate = _compute_failure_rates(outage_gen_params.fo_rate, outage_gen_params.fo_duration) + daily_po_rate = _compute_failure_rates(outage_gen_params.po_rate, outage_gen_params.po_duration) + _combine_failure_rates(daily_fo_rate, daily_po_rate) + + fo_drawer = ForcedOutagesDrawer(self.rng, outage_gen_params.unit_count, daily_fo_rate) + po_drawer = PlannedOutagesDrawer(self.rng, outage_gen_params.unit_count, daily_po_rate) + + fod_generator = make_duration_generator(self.rng, outage_gen_params.fo_law, + outage_gen_params.fo_volatility, outage_gen_params.fo_duration) + pod_generator = make_duration_generator(self.rng, outage_gen_params.po_law, + outage_gen_params.po_volatility, outage_gen_params.po_duration) + + self.output_generation(outage_gen_params, fo_drawer, fod_generator, + log, log_size, logp, + number_of_timeseries, output, po_drawer, pod_generator) + + def generate_time_series_for_links( + self, + link: LinkCapacity, + number_of_timeseries: int + ) -> tuple[ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]]: + """ + generation of multiple timeseries for a given link capacity + """ + _check_link_capacity(link) + + # TODO: Remove this log size limit, seems useless and error prone if very large durations + log_size = 4000 # >= 5 * (max(df) + max(dp)) + # the number of starting (if positive)/ stopping (if negative) units (due to FO and PO) at a given time + log = np.zeros(log_size, dtype=int) + # same but only for PO; necessary to ensure maximum and minimum PO is respected + logp = np.zeros(log_size, dtype=int) + + # --- calculation --- + # the two first generated time series will be dropped, necessary to make system stable and physically coherent + # as a consequence, N + 2 time series will be computed + + # output that will be returned + output = OutputTimeseries(number_of_timeseries, self.days) + + self._generate_outages(link.outage_gen_params, log, log_size, logp, number_of_timeseries, output) + + hourly_available_units = _daily_to_hourly(output.available_units) + + direct_output = hourly_available_units * link.nominal_capacity * link.modulation_direct[:, np.newaxis] + indirect_output = hourly_available_units * link.nominal_capacity * link.modulation_indirect[:, np.newaxis] + + return direct_output, indirect_output + + def generate_time_series_for_clusters( + self, + cluster: ThermalCluster, + number_of_timeseries: int, ) -> OutputTimeseries: """ generation of multiple timeseries for a given thermal cluster @@ -273,14 +433,8 @@ def generate_time_series( # lf and lp represent the forced and programed failure rate # failure rate means the probability to enter in outage each day # its value is given by: OR / [OR + OD * (1 - OR)] - daily_fo_rate = _compute_failure_rates(cluster.fo_rate, cluster.fo_duration) - daily_po_rate = _compute_failure_rates(cluster.po_rate, cluster.po_duration) - _combine_failure_rates(daily_fo_rate, daily_po_rate) - fo_drawer = ForcedOutagesDrawer(self.rng, cluster.unit_count, daily_fo_rate) - po_drawer = PlannedOutagesDrawer(self.rng, cluster.unit_count, daily_po_rate) - fod_generator = make_duration_generator(self.rng, cluster.fo_law, cluster.fo_volatility, cluster.fo_duration) - pod_generator = make_duration_generator(self.rng, cluster.po_law, cluster.po_volatility, cluster.po_duration) + # --- calculation --- # the two first generated time series will be dropped, necessary to make system stable and physically coherent @@ -289,17 +443,27 @@ def generate_time_series( # output that will be returned output = OutputTimeseries(number_of_timeseries, self.days) + self._generate_outages(cluster.outage_gen_params, log, log_size, logp, number_of_timeseries, output) + + # + hourly_available_units = _daily_to_hourly(output.available_units) + output.available_power = hourly_available_units * cluster.nominal_power * cluster.modulation[:, np.newaxis] + np.round(output.available_power) + return output + + def output_generation(self, outage_gen_params, fo_drawer, fod_generator, log, log_size, logp, number_of_timeseries, + output, + po_drawer, pod_generator): # dates now = 0 - # current number of PO and AU (avlaible units) current_planned_outages = 0 - current_available_units = cluster.unit_count + current_available_units = outage_gen_params.unit_count # stock is a way to keep the number of PO pushed back due to PO max / antcipated due to PO min # stock > 0 number of PO pushed back, stock < 0 number of PO antcipated stock = 0 - for ts_index in range(-2, number_of_timeseries): + for day in range(self.days): # = return of units wich were in outage = current_planned_outages -= logp[now] @@ -307,8 +471,8 @@ def generate_time_series( current_available_units += log[now] log[now] = 0 - if current_planned_outages > cluster.npo_max[day]: - cible_retour = current_planned_outages - cluster.npo_max[day] + if current_planned_outages > outage_gen_params.npo_max[day]: + cible_retour = current_planned_outages - outage_gen_params.npo_max[day] cumul_retour = 0 for index in range(1, log_size): if cumul_retour == cible_retour: @@ -323,39 +487,32 @@ def generate_time_series( log[(now + index) % log_size] -= logp[(now + index) % log_size] logp[(now + index) % log_size] = 0 current_available_units += cible_retour - current_planned_outages = cluster.npo_max[day] + current_planned_outages = outage_gen_params.npo_max[day] fo_candidates = fo_drawer.draw(current_available_units, day) po_candidates, stock = po_drawer.draw(current_available_units, day, stock) # apparent PO is compared to cur_nb_AU, considering stock - candidate = po_candidates + stock - if 0 <= candidate and candidate <= current_available_units: - po_candidates = candidate - stock = 0 - if candidate > current_available_units: - po_candidates = current_available_units - stock = candidate - current_available_units - if candidate < 0: - po_candidates = 0 - stock = candidate + po_candidates, stock = self._compare_apparent_PO(current_available_units, po_candidates, stock) + # params : npo_max / min, po_can, current_planned, stock + # # = checking min and max PO = - if po_candidates + current_planned_outages > cluster.npo_max[day]: + if po_candidates + current_planned_outages > outage_gen_params.npo_max[day]: # too many PO to place # the excedent is placed in stock - stock += po_candidates + current_planned_outages - cluster.npo_max[day] - po_candidates = cluster.npo_max[day] - current_planned_outages - current_planned_outages = cluster.npo_max[day] - elif po_candidates + current_planned_outages < cluster.npo_min[day]: - if cluster.npo_min[day] - current_planned_outages > current_available_units: + stock += po_candidates + current_planned_outages - outage_gen_params.npo_max[day] + po_candidates = outage_gen_params.npo_max[day] - current_planned_outages + current_planned_outages = outage_gen_params.npo_max[day] + elif po_candidates + current_planned_outages < outage_gen_params.npo_min[day]: + if outage_gen_params.npo_min[day] - current_planned_outages > current_available_units: stock -= current_available_units - po_candidates po_candidates = current_available_units current_planned_outages += po_candidates else: - stock -= cluster.npo_min[day] - (po_candidates + current_planned_outages) - po_candidates = cluster.npo_min[day] - current_planned_outages - current_planned_outages = cluster.npo_min[day] + stock -= outage_gen_params.npo_min[day] - (po_candidates + current_planned_outages) + po_candidates = outage_gen_params.npo_min[day] - current_planned_outages + current_planned_outages = outage_gen_params.npo_min[day] else: current_planned_outages += po_candidates @@ -399,8 +556,3 @@ def generate_time_series( output.available_units[day, ts_index] = current_available_units now = (now + 1) % log_size - - hourly_available_units = _daily_to_hourly(output.available_units) - output.available_power = hourly_available_units * cluster.nominal_power * cluster.modulation[:, np.newaxis] - np.round(output.available_power) - return output diff --git a/tests/output/geometric_law_distrib.png b/tests/output/geometric_law_distrib.png index 6fc58c3b900d3a3b556a001fcf67450600998826..72423b543493092e6f8506baa7dbc68db9f2bce2 100644 GIT binary patch delta 45 zcmaDdjq%Ae#tCi;mU>1y3K=CO1;tkS`nicE1v&X8Ihjd%`9Umb0sw#m B5hMTr delta 45 zcmaDdjq%Ae#tCi;rh0}t3K=CO1;tkS`nicE1v&X8Ihjd%`9 10: - assert tot_simult_po <= cluster_100.npo_max[i % 365] - assert tot_simult_po >= cluster_100.npo_min[i % 365] + assert tot_simult_po <= cluster_100.outage_gen_params.npo_max[i % 365] + assert tot_simult_po >= cluster_100.outage_gen_params.npo_min[i % 365] tots_simult_po[i // 365].append(tot_simult_po) @@ -110,7 +110,7 @@ def test_max_po(cluster_high_por, output_directory): ts_nb = 4 generator = ThermalDataGenerator() - results = generator.generate_time_series(cluster_high_por, ts_nb) + results = generator.generate_time_series_for_clusters(cluster_high_por, ts_nb) # check the max PO tots_simult_po = [[] for _ in range(ts_nb)] @@ -129,8 +129,8 @@ def test_max_po(cluster_high_por, output_directory): cursor[9] += mo if i > 10: - assert tot_simult_po <= cluster_high_por.npo_max[i % 365] - assert tot_simult_po >= cluster_high_por.npo_min[i % 365] + assert tot_simult_po <= cluster_high_por.outage_gen_params.npo_max[i % 365] + assert tot_simult_po >= cluster_high_por.outage_gen_params.npo_min[i % 365] tots_simult_po[i // 365].append(tot_simult_po) diff --git a/tests/test_unit.py b/tests/test_unit.py index ad538f7..fee244a 100644 --- a/tests/test_unit.py +++ b/tests/test_unit.py @@ -19,10 +19,11 @@ ProbabilityLaw, ThermalCluster, ThermalDataGenerator, + OutageGenerationParameters, _categorize_outages, _check_cluster, _column_powers, - _daily_to_hourly, + _daily_to_hourly, LinkCapacity, ) @@ -43,29 +44,29 @@ def test_elevate_to_power(): @pytest.fixture() def base_cluster_365_days(): days = 365 + outage_gen_params = valid_outage_params() return ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=0.2 * np.ones(dtype=float, shape=days), - po_duration=10 * np.ones(dtype=int, shape=days), - po_rate=np.zeros(dtype=float, shape=days), - npo_min=np.zeros(dtype=int, shape=days), - npo_max=10 * np.ones(dtype=int, shape=days), ) +@pytest.fixture() +def base_link_365_days(): + days = 365 + outage_gen_params = valid_outage_params() + return LinkCapacity( + outage_gen_params, + nominal_capacity=100, + modulation_indirect=np.ones(dtype=float, shape=8760), + modulation_direct=np.ones(dtype=float, shape=8760), + ) -def test_cluster_with_null_duration(rng): +# cluster -> outage gen params +def test_outage_params_with_null_duration(rng): days = 365 args = { "unit_count": 10, - "nominal_power": 100, - "modulation": np.ones(dtype=float, shape=8760), "fo_law": ProbabilityLaw.UNIFORM, "fo_volatility": 0, "po_law": ProbabilityLaw.UNIFORM, @@ -80,53 +81,47 @@ def test_cluster_with_null_duration(rng): for duration_type in ["po_duration", "fo_duration"]: args[duration_type] = 10 * np.zeros(dtype=int, shape=days) with pytest.raises(ValueError, match="outage duration is null or negative on following days"): - ThermalCluster(**args) + OutageGenerationParameters(**args) -def test_invalid_fo_rates(rng, base_cluster_365_days): +def test_invalid_fo_rates(rng, base_cluster_365_days, base_link_365_days): days = 365 cluster = base_cluster_365_days - cluster.fo_rate[12] = -0.2 - cluster.fo_rate[10] = -0.1 + link = base_link_365_days + cluster.outage_gen_params.fo_rate[12] = -0.2 + cluster.outage_gen_params.fo_rate[10] = -0.1 + link.outage_gen_params.fo_rate[12] = -0.2 + link.outage_gen_params.fo_rate[10] = -0.1 with pytest.raises( ValueError, match="Forced failure rate is negative on following days: \[10, 12\]", ): generator = ThermalDataGenerator(rng=rng, days=days) - generator.generate_time_series(cluster, 1) + generator.generate_time_series_for_clusters(cluster, 1) def test_invalid_po_rates(rng, base_cluster_365_days): days = 365 cluster = base_cluster_365_days - cluster.po_rate[12] = -0.2 - cluster.po_rate[10] = -0.1 + cluster.outage_gen_params.po_rate[12] = -0.2 + cluster.outage_gen_params.po_rate[10] = -0.1 with pytest.raises( ValueError, match="Planned failure rate is negative on following days: \[10, 12\]", ): generator = ThermalDataGenerator(rng=rng, days=days) - generator.generate_time_series(cluster, 1) + generator.generate_time_series_for_clusters(cluster, 1) def valid_cluster() -> ThermalCluster: days = 365 + outage_gen_params = valid_outage_params() return ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=0.2 * np.ones(dtype=float, shape=days), - po_duration=10 * np.ones(dtype=int, shape=days), - po_rate=np.zeros(dtype=float, shape=days), - npo_min=np.zeros(dtype=int, shape=days), - npo_max=10 * np.ones(dtype=int, shape=days), ) @@ -141,17 +136,17 @@ def test_invalid_cluster(): cluster = valid_cluster() with pytest.raises(ValueError): - cluster.unit_count = -1 + cluster.outage_gen_params.unit_count = -1 _check_cluster(cluster) cluster = valid_cluster() with pytest.raises(ValueError): - cluster.fo_duration[10] = -1 + cluster.outage_gen_params.fo_duration[10] = -1 _check_cluster(cluster) cluster = valid_cluster() with pytest.raises(ValueError): - cluster.po_duration[10] = -1 + cluster.outage_gen_params.po_duration[10] = -1 _check_cluster(cluster) cluster = valid_cluster() @@ -166,7 +161,7 @@ def test_invalid_cluster(): cluster = valid_cluster() with pytest.raises(ValueError): - cluster.fo_rate = cluster.fo_rate[:-2] + cluster.outage_gen_params.fo_rate = cluster.outage_gen_params.fo_rate[:-2] _check_cluster(cluster) @@ -189,25 +184,23 @@ def test_distribute_outages(available_units, po_candidates, fo_candidates, expec def test_forced_outages(rng): days = 365 + #modifier valid_outage_params de facon à le paramétrer + outage_gen_params = valid_outage_params() cluster = ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=0.2 * np.ones(dtype=float, shape=days), - po_duration=10 * np.ones(dtype=int, shape=days), - po_rate=np.zeros(dtype=float, shape=days), - npo_min=np.zeros(dtype=int, shape=days), - npo_max=10 * np.ones(dtype=int, shape=days), + ) + link_capacity=LinkCapacity( + outage_gen_params, + nominal_capacity=100, + modulation_direct=np.ones(dtype=float, shape=8760), + modulation_indirect=np.ones(dtype=float, shape=8760), ) cluster.modulation[12] = 0.5 generator = ThermalDataGenerator(rng=rng, days=days) - results = generator.generate_time_series(cluster, 1) + results = generator.generate_time_series_for_clusters(cluster, 1) # 2 forced outages occur on day 5, with duration 10 npt.assert_equal(results.forced_outages.T[0][:6], [0, 0, 0, 0, 2, 0]) npt.assert_equal(results.forced_outage_durations.T[0][:6], [0, 0, 0, 0, 10, 0]) @@ -225,25 +218,24 @@ def test_forced_outages(rng): def test_planned_outages(rng): days = 365 + outage_gen_params = valid_outage_params() cluster = ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=np.zeros(dtype=float, shape=days), - po_duration=10 * np.ones(dtype=int, shape=days), - po_rate=0.2 * np.ones(dtype=float, shape=days), - npo_min=np.zeros(dtype=int, shape=days), - npo_max=10 * np.ones(dtype=int, shape=days), + ) + link=LinkCapacity( + outage_gen_params, + nominal_capacity=100, + modulation_indirect=np.ones(dtype=float, shape=8760), + modulation_direct=np.ones(dtype=float, shape=8760), ) cluster.modulation[12] = 0.5 + link.modulation_indirect[12] = 0.5 + link.modulation_direct[12] = 0.5 generator = ThermalDataGenerator(rng=rng, days=days) - results = generator.generate_time_series(cluster, 1) + results = generator.generate_time_series_for_clusters(cluster, 1) # 0 forced outage npt.assert_equal(results.forced_outages.T[0], np.zeros(365)) npt.assert_equal(results.forced_outage_durations.T[0], np.zeros(365)) @@ -260,28 +252,24 @@ def test_planned_outages(rng): def test_planned_outages_limitation(rng): days = 365 # Maximum 1 planned outage at a time. + outage_gen_params = valid_outage_params() cluster = ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=np.zeros(dtype=float, shape=days), - po_duration=2 * np.ones(dtype=int, shape=days), - po_rate=0.2 * np.ones(dtype=float, shape=days), - npo_min=np.zeros(dtype=int, shape=days), - npo_max=1 * np.ones(dtype=int, shape=days), ) - + link=LinkCapacity( + outage_gen_params, + nominal_capacity=100, + modulation_direct=np.ones(dtype=float, shape=8760), + modulation_indirect=np.ones(dtype=float, shape=8760), + ) generator = ThermalDataGenerator(rng=rng, days=days) - results = generator.generate_time_series(cluster, 1) + results = generator.generate_time_series_for_clusters(cluster, 1) # No forced outage npt.assert_equal(results.forced_outages.T[0], np.zeros(365)) npt.assert_equal(results.forced_outage_durations.T[0], np.zeros(365)) - # Maxmimum one planned outage at a time + # Maximum one planned outage at a time npt.assert_equal(results.planned_outages.T[0][:6], [1, 0, 1, 0, 1, 0]) npt.assert_equal(results.planned_outage_durations.T[0][:6], [2, 0, 2, 0, 2, 0]) npt.assert_equal(results.available_units.T[0][:5], [9, 9, 9, 9, 9]) @@ -294,28 +282,24 @@ def test_planned_outages_limitation(rng): def test_planned_outages_min_limitation(rng): days = 365 # Minimum 2 planned outages at a time + outage_gen_params = valid_outage_params() cluster = ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=100, modulation=np.ones(dtype=float, shape=8760), - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0, - po_law=ProbabilityLaw.UNIFORM, - po_volatility=0, - fo_duration=10 * np.ones(dtype=int, shape=days), - fo_rate=np.zeros(dtype=float, shape=days), - po_duration=10 * np.ones(dtype=int, shape=days), - po_rate=0.2 * np.ones(dtype=float, shape=days), - npo_min=2 * np.ones(dtype=int, shape=days), - npo_max=5 * np.ones(dtype=int, shape=days), ) - + link=LinkCapacity( + outage_gen_params, + nominal_capacity=100, + modulation_direct=np.ones(dtype=float, shape=8760), + modulation_indirect=np.ones(dtype=float, shape=8760), + ) generator = ThermalDataGenerator(rng=rng, days=days) - results = generator.generate_time_series(cluster, 1) + results = generator.generate_time_series_for_clusters(cluster, 1) # No forced outage npt.assert_equal(results.forced_outages.T[0], np.zeros(365)) npt.assert_equal(results.forced_outage_durations.T[0], np.zeros(365)) - # Maxmimum one planned outage at a time + # Maximum one planned outage at a time npt.assert_equal(results.planned_outages.T[0][:6], [0, 0, 1, 0, 0, 1]) npt.assert_equal(results.planned_outage_durations.T[0][:6], [0, 0, 10, 0, 0, 10]) npt.assert_equal(results.available_units.T[0][:5], [8, 8, 8, 8, 8]) @@ -338,26 +322,50 @@ def test_with_long_fo_and_po_duration(data_directory): po_duration[:31] = 3 fo_rate[:31] = 0.1 po_rate[:31] = 0.02 + outage_gen_params = valid_outage_params() cluster = ThermalCluster( - unit_count=10, + outage_gen_params, nominal_power=500, modulation=modulation_matrix, - fo_law=ProbabilityLaw.UNIFORM, - fo_volatility=0.5, - po_law=ProbabilityLaw.GEOMETRIC, - po_volatility=0.5, - fo_duration=fo_duration, - fo_rate=fo_rate, - po_duration=po_duration, - po_rate=po_rate, - npo_min=0 * np.ones(dtype=int, shape=days), - npo_max=3 * np.ones(dtype=int, shape=days), + ) + link=LinkCapacity( + outage_gen_params, + nominal_capacity=500, + modulation_indirect=modulation_matrix, + modulation_direct=modulation_matrix, ) rng = MersenneTwisterRNG(seed=3005489) generator = ThermalDataGenerator(rng=rng, days=days) - results = generator.generate_time_series(cluster, 10) + results = generator.generate_time_series_for_clusters(cluster, 10) expected_matrix = np.loadtxt( data_directory.joinpath(f"expected_result_long_po_and_fo_duration.txt"), delimiter="\t" ) assert np.array_equal(results.available_power, expected_matrix) + +def valid_outage_params() -> OutageGenerationParameters: + days = 365 + return OutageGenerationParameters( + unit_count=10, + fo_law=ProbabilityLaw.UNIFORM, + fo_volatility=0, + po_law=ProbabilityLaw.UNIFORM, + po_volatility=0, + fo_duration=10 * np.ones(dtype=int, shape=days), + fo_rate=np.zeros(dtype=float, shape=days), + po_duration=10 * np.ones(dtype=int, shape=days), + po_rate=0.2 * np.ones(dtype=float, shape=days), + npo_min=np.zeros(dtype=int, shape=days), + npo_max=10 * np.ones(dtype=int, shape=days), + ) + +#def test_valid_outage_params(): + + +#def test_invalid_outage_params(): + + +#def test_valid_link_capacity(): + + +#def test_invalid_link_capacity():