-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
368 lines (270 loc) · 15.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import torch.nn as nn
import numpy as np
from DSTPP import GaussianDiffusion_ST, Transformer, Transformer_ST, Model_all, ST_Diffusion
from torch.optim import AdamW, Adam
import argparse
from scipy.stats import kstest
from DSTPP.Dataset import get_dataloader
import time
import setproctitle
from torch.utils.tensorboard import SummaryWriter
import datetime
import pickle
import os
from tqdm import tqdm
import random
import json
def setup_init(args):
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def model_name():
TIME = int(time.time())
TIME = time.localtime(TIME)
return time.strftime("%Y-%m-%d %H:%M:%S",TIME)
def normalization(x,MAX,MIN):
return (x-MIN)/(MAX-MIN)
def get_args():
parser = argparse.ArgumentParser(description='test')
parser.add_argument('--seed', type=int, default=1234, help='')
parser.add_argument('--mode', type=str, default='train', help='')
parser.add_argument('--total_epochs', type=int, default=1000, help='')
parser.add_argument('--machine', type=str, default='none', help='')
parser.add_argument('--loss_type', type=str, default='l2',choices=['l1','l2','Euclid'], help='')
parser.add_argument('--beta_schedule', type=str, default='cosine',choices=['linear','cosine'], help='')
parser.add_argument('--dim', type=int, default=2, help='', choices = [1,2,3])
parser.add_argument('--dataset', type=str, default='Earthquake',choices=['Citibike','Earthquake','HawkesGMM','Pinwheel','COVID19','Mobility','HawkesGMM_2d','Independent'], help='')
parser.add_argument('--batch_size', type=int, default=64,help='')
parser.add_argument('--timesteps', type=int, default=100, help='')
parser.add_argument('--samplingsteps', type=int, default=100, help='')
parser.add_argument('--objective', type=str, default='pred_noise', help='')
parser.add_argument('--cuda_id', type=str, default='0', help='')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
return args
opt = get_args()
device = torch.device("cuda:{}".format(opt.cuda_id) if opt.cuda else "cpu")
if opt.dataset == 'HawkesGMM':
opt.dim=1
os.environ['CUDA_VISIBLE_DEVICES'] = str(opt.cuda_id)
def data_loader(writer):
f = open('dataset/{}/data_train.pkl'.format(opt.dataset),'rb')
train_data = pickle.load(f)
train_data = [[list(i) for i in u] for u in train_data]
train_data = [[[i[0], i[0]-u[index-1][0] if index>0 else i[0]]+ i[1:] for index, i in enumerate(u)] for u in train_data]
f = open('dataset/{}/data_val.pkl'.format(opt.dataset),'rb')
val_data = pickle.load(f)
val_data = [[list(i) for i in u] for u in val_data]
val_data = [[[i[0], i[0]-u[index-1][0] if index>0 else i[0]]+ i[1:] for index, i in enumerate(u)] for u in val_data]
f = open('dataset/{}/data_test.pkl'.format(opt.dataset),'rb')
test_data = pickle.load(f)
test_data = [[list(i) for i in u] for u in test_data]
test_data = [[[i[0], i[0]-u[index-1][0] if index>0 else i[0]]+ i[1:] for index, i in enumerate(u)] for u in test_data]
data_all = train_data+test_data+val_data
Max, Min = [], []
for m in range(opt.dim+2):
if m > 0:
Max.append(max([i[m] for u in data_all for i in u]))
Min.append(min([i[m] for u in data_all for i in u]))
else:
Max.append(1)
Min.append(0)
assert Min[1] > 0
train_data = [[[normalization(i[j], Max[j], Min[j]) for j in range(len(i))] for i in u] for u in train_data]
test_data = [[[normalization(i[j], Max[j], Min[j]) for j in range(len(i))] for i in u] for u in test_data]
val_data = [[[normalization(i[j], Max[j], Min[j]) for j in range(len(i))] for i in u] for u in val_data]
trainloader = get_dataloader(train_data, opt.batch_size, D = opt.dim, shuffle=True)
testloader = get_dataloader(test_data, len(test_data) if len(test_data)<=1000 else 1000, D = opt.dim, shuffle=False)
valloader = get_dataloader(test_data, len(val_data) if len(val_data)<=1000 else 1000, D = opt.dim, shuffle=False)
return trainloader, testloader, valloader, (Max,Min)
def Batch2toModel(batch, transformer):
if opt.dim ==1:
event_time_origin, event_time, lng = map(lambda x: x.to(device), batch)
event_loc = lng.unsqueeze(dim=2)
if opt.dim==2:
event_time_origin, event_time, lng, lat = map(lambda x: x.to(device), batch)
event_loc = torch.cat((lng.unsqueeze(dim=2),lat.unsqueeze(dim=2)),dim=-1)
if opt.dim==3:
event_time_origin, event_time, lng, lat, height = map(lambda x: x.to(device), batch)
event_loc = torch.cat((lng.unsqueeze(dim=2),lat.unsqueeze(dim=2), height.unsqueeze(dim=2)),dim=-1)
event_time = event_time.to(device)
event_time_origin = event_time_origin.to(device)
event_loc = event_loc.to(device)
enc_out, mask = transformer(event_loc, event_time_origin)
enc_out_non_mask = []
event_time_non_mask = []
event_loc_non_mask = []
for index in range(mask.shape[0]):
length = int(sum(mask[index]).item())
if length>1:
enc_out_non_mask += [i.unsqueeze(dim=0) for i in enc_out[index][:length-1]]
event_time_non_mask += [i.unsqueeze(dim=0) for i in event_time[index][1:length]]
event_loc_non_mask += [i.unsqueeze(dim=0) for i in event_loc[index][1:length]]
enc_out_non_mask = torch.cat(enc_out_non_mask,dim=0)
event_time_non_mask = torch.cat(event_time_non_mask,dim=0)
event_loc_non_mask = torch.cat(event_loc_non_mask,dim=0)
event_time_non_mask = event_time_non_mask.reshape(-1,1,1)
event_loc_non_mask = event_loc_non_mask.reshape(-1,1,opt.dim)
enc_out_non_mask = enc_out_non_mask.reshape(event_time_non_mask.shape[0],1,-1)
return event_time_non_mask, event_loc_non_mask, enc_out_non_mask
def LR_warmup(lr, epoch_num, epoch_current):
return lr * (epoch_current+1) / epoch_num
if __name__ == "__main__":
setup_init(opt)
setproctitle.setproctitle("Model-Training")
print('dataset:{}'.format(opt.dataset))
# Specify a directory for logging data
logdir = "./logs/{}_timesteps_{}".format( opt.dataset, opt.timesteps)
model_path = './ModelSave/dataset_{}_timesteps_{}/'.format(opt.dataset, opt.timesteps)
if not os.path.exists('./ModelSave'):
os.mkdir('./ModelSave')
if 'train' in opt.mode and not os.path.exists(model_path):
os.mkdir(model_path)
writer = SummaryWriter(log_dir = logdir,flush_secs=5)
model= ST_Diffusion(
n_steps=opt.timesteps,
dim=1+opt.dim,
condition = True,
cond_dim=64
).to(device)
diffusion = GaussianDiffusion_ST(
model,
loss_type = opt.loss_type,
seq_length = 1+opt.dim,
timesteps = opt.timesteps,
sampling_timesteps = opt.samplingsteps,
objective = opt.objective,
beta_schedule = opt.beta_schedule
).to(device)
transformer = Transformer_ST(
d_model=64,
d_rnn=256,
d_inner=128,
n_layers=4,
n_head=4,
d_k=16,
d_v=16,
dropout=0.1,
device=device,
loc_dim = opt.dim,
CosSin = True
).to(device)
Model = Model_all(transformer,diffusion)
trainloader, testloader, valloader, (MAX,MIN) = data_loader(writer)
warmup_steps = 5
# training
optimizer = AdamW(Model.parameters(), lr = 1e-3, betas = (0.9, 0.99))
step, early_stop = 0, 0
min_loss_test = 1e20
for itr in range(opt.total_epochs):
print('epoch:{}'.format(itr))
if itr % 10==0:
print('Evaluate!')
with torch.no_grad():
Model.eval()
# validation set
loss_test_all, vb_test_all, vb_test_temporal_all, vb_test_spatial_all = 0.0, 0.0, 0.0, 0.0
mae_temporal, rmse_temporal, mae_spatial, mae_lng, mae_lat, total_num = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
for batch in valloader:
event_time_non_mask, event_loc_non_mask, enc_out_non_mask = Batch2toModel(batch, Model.transformer)
sampled_seq = Model.diffusion.sample(batch_size = event_time_non_mask.shape[0],cond=enc_out_non_mask)
sampled_seq_temporal_all, sampled_seq_spatial_all = [], []
for _ in range(100):
sampled_seq = Model.diffusion.sample(batch_size = event_time_non_mask.shape[0],cond=enc_out_non_mask)
sampled_seq_temporal_all.append((sampled_seq[:,0,:1].detach().cpu() + MIN[1]) * (MAX[1]-MIN[1]))
sampled_seq_spatial_all.append(((sampled_seq[:,0,-opt.dim:].detach().cpu() + torch.tensor([MIN[2:]])) * (torch.tensor([MAX[2:]])-torch.tensor([MIN[2:]]))).unsqueeze(dim=1))
loss = Model.diffusion(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1), enc_out_non_mask)
vb, vb_temporal, vb_spatial = Model.diffusion.NLL_cal(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1), enc_out_non_mask)
vb_test_all += vb
vb_test_temporal_all += vb_temporal
vb_test_spatial_all += vb_spatial
loss_test_all += loss.item() * event_time_non_mask.shape[0]
real = (event_time_non_mask[:,0,:].detach().cpu() + MIN[1]) * (MAX[1]-MIN[1])
gen = (sampled_seq[:,0,:1].detach().cpu() + MIN[1]) * (MAX[1]-MIN[1])
assert real.shape==gen.shape
assert real.shape == sampled_seq_temporal_all.shape
mae_temporal += torch.abs(real-gen).sum().item()
rmse_temporal += ((real-gen)**2).sum().item()
rmse_temporal_mean += ((real-sampled_seq_temporal_all)**2).sum().item()
real = event_loc_non_mask[:,0,:].detach().cpu()
assert real.shape[1:] == torch.tensor(MIN[2:]).shape
real = (real + torch.tensor([MIN[2:]])) * (torch.tensor([MAX[2:]])-torch.tensor([MIN[2:]]))
gen = sampled_seq[:,0,-opt.dim:].detach().cpu()
gen = (gen + torch.tensor([MIN[2:]])) * (torch.tensor([MAX[2:]])-torch.tensor([MIN[2:]]))
assert real.shape==gen.shape
assert real.shape==sampled_seq_spatial_all.shape
mae_spatial += torch.sqrt(torch.sum((real-gen)**2,dim=-1)).sum().item()
mae_spatial_mean += torch.sqrt(torch.sum((real-sampled_seq_spatial_all)**2,dim=-1)).sum().item()
total_num += gen.shape[0]
assert gen.shape[0] == event_time_non_mask.shape[0]
if loss_test_all > min_loss_test:
early_stop += 1
if early_stop >= 100:
break
else:
early_stop = 0
torch.save(Model.state_dict(), model_path+'model_{}.pkl'.format(itr))
min_loss_test = min(min_loss_test, loss_test_all)
writer.add_scalar(tag='Evaluation/loss_val',scalar_value=loss_test_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_val',scalar_value=vb_test_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_temporal_val',scalar_value=vb_test_temporal_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_spatial_val',scalar_value=vb_test_spatial_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/mae_temporal_val',scalar_value=mae_temporal/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/rmse_temporal_val',scalar_value=np.sqrt(rmse_temporal/total_num),global_step=itr)
writer.add_scalar(tag='Evaluation/rmse_temporal_mean_val',scalar_value=np.sqrt(rmse_temporal_mean/total_num),global_step=itr)
writer.add_scalar(tag='Evaluation/distance_spatial_val',scalar_value=mae_spatial/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/distance_spatial_mean_val',scalar_value=mae_spatial_mean/total_num,global_step=itr)
# test set
loss_test_all, vb_test_all, vb_test_temporal_all, vb_test_spatial_all = 0.0, 0.0, 0.0, 0.0
mae_temporal, rmse_temporal, mae_spatial, mae_lng, mae_lat, total_num = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
for batch in testloader:
event_time_non_mask, event_loc_non_mask, enc_out_non_mask = Batch2toModel(batch, Model.transformer)
sampled_seq = Model.diffusion.sample(batch_size = event_time_non_mask.shape[0],cond=enc_out_non_mask)
loss = Model.diffusion(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1), enc_out_non_mask)
vb, vb_temporal, vb_spatial = Model.diffusion.NLL_cal(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1), enc_out_non_mask)
vb_test_all += vb
vb_test_temporal_all += vb_temporal
vb_test_spatial_all += vb_spatial
loss_test_all += loss.item() * event_time_non_mask.shape[0]
total_num += gen.shape[0]
writer.add_scalar(tag='Evaluation/loss_test',scalar_value=loss_test_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_test',scalar_value=vb_test_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_temporal_test',scalar_value=vb_test_temporal_all/total_num,global_step=itr)
writer.add_scalar(tag='Evaluation/NLL_spatial_test',scalar_value=vb_test_spatial_all/total_num,global_step=itr)
if itr < warmup_steps:
for param_group in optimizer.param_groups:
lr = LR_warmup(1e-3, warmup_steps, itr)
param_group["lr"] = lr
else:
for param_group in optimizer.param_groups:
lr = 1e-3- (1e-3 - 5e-5)*(itr-warmup_steps)/opt.total_epochs
param_group["lr"] = lr
writer.add_scalar(tag='Statistics/lr',scalar_value=lr,global_step=itr)
Model.train()
loss_all, vb_all, vb_temporal_all, vb_spatial_all, total_num = 0.0, 0.0, 0.0, 0.0, 0.0
for batch in trainloader:
event_time_non_mask, event_loc_non_mask, enc_out_non_mask = Batch2toModel(batch, Model.transformer)
loss = Model.diffusion(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1),enc_out_non_mask)
optimizer.zero_grad()
loss.backward()
loss_all += loss.item() * event_time_non_mask.shape[0]
vb, vb_temporal, vb_spatial = Model.diffusion.NLL_cal(torch.cat((event_time_non_mask,event_loc_non_mask),dim=-1), enc_out_non_mask)
vb_all += vb
vb_temporal_all += vb_temporal
vb_spatial_all += vb_spatial
writer.add_scalar(tag='Training/loss_step',scalar_value=loss.item(),global_step=step)
torch.nn.utils.clip_grad_norm_(Model.parameters(), 1.)
optimizer.step()
step += 1
total_num += event_time_non_mask.shape[0]
with torch.cuda.device("cuda:{}".format(opt.cuda_id)):
torch.cuda.empty_cache()
writer.add_scalar(tag='Training/loss_epoch',scalar_value=loss_all/total_num,global_step=itr)
writer.add_scalar(tag='Training/NLL_epoch',scalar_value=vb_all/total_num,global_step=itr)
writer.add_scalar(tag='Training/NLL_temporal_epoch',scalar_value=vb_temporal_all/total_num,global_step=itr)
writer.add_scalar(tag='Training/NLL_spatial_epoch',scalar_value=vb_spatial_all/total_num,global_step=itr)