forked from zakaryaxali/bayes_overlapping_clusters
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathomm.py
executable file
·228 lines (195 loc) · 9.41 KB
/
omm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import beta
from scipy.stats import truncnorm
from scipy.stats import norm
from scipy.stats import bernoulli
class IOMM():
def __init__(self, N, K, D, N_iter, Z, X, theta, alpha_prior, omega = 10, copy_rows=3,burning_period=3):
self.N = N
self.K = K
self.D = D
self.N_iter = N_iter
self.P_Z = np.zeros([N,K])
self.X = X
self.theta = theta
self.burning_period=burning_period
self.alpha_prior = alpha_prior
self.omega = omega
self.copy_rows = copy_rows
ind_train=np.random.randint(0,self.N,self.copy_rows)
self.ind_train=ind_train
ind_test=np.delete(np.arange(self.N),self.ind_train)
self.ind_test=ind_test
self.Z = np.zeros([N,K])
self.Z[ind_train,:] = Z[ind_train,:]
self.Z_temp = np.zeros([self.N,self.K])
def learning(self,random_walk):
print("ind test",self.ind_test)
theta_accept=[]
Z_mean=np.zeros([self.N,self.K])
U = np.zeros([self.N,self.N])
for j in range(self.N_iter):
#initialize Z_temp and P_Z_temp at each iteration
self.Z_temp = np.zeros([self.N,self.K])
self.P_Z = np.zeros([self.N,self.K])
print("iteration n°",j)
#during burning period we do not update Z
if j>self.burning_period:
self.Z_temp, self.P_Z = self.update_clusters()
Z_mean=self.Z_temp+Z_mean
U=U+np.dot(self.Z_temp,self.Z_temp.T)
if random_walk==True:
theta_new,accept_ratio = self.resample_theta_rw()
self.theta = theta_new
print("the acceptance rate was:",accept_ratio)
else:
theta_new,accept_ratio = self.resample_theta()
self.theta = theta_new
print("the acceptance rate was:",accept_ratio)
print(self.theta)
theta_to_append = {}
theta_to_append= np.copy(theta_new)
theta_accept.append(theta_to_append)
Z_mean=Z_mean/(self.N_iter-self.burning_period)
U = U / (self.N_iter-self.burning_period)
return self.Z_temp,theta_accept,Z_mean,U
def update_clusters(self):
Z = np.copy(self.Z)
P_Z = self.P_Z
for i in self.ind_test:
print("i =",i)
P_Z[i,:] = self.update_p_z_i(i, P_Z, Z)
Z[i,:] = self.propose_new_clusters(i, P_Z, Z)
return Z, P_Z
def update_p_z_i(self, i, P_Z, Z):
print("___________1.compute probability of observation i taking category k_________")
for k in range(self.K):
m_without_i_k = self.m_without_i_k(Z,i,k)
if m_without_i_k > 0 and Z[i,k] == 0: #we care only about categories that are not yet considered for movie i
print("k=",k)
Z_cond = np.copy(Z)
Z_cond[i,k]=1
P_Z_1=(m_without_i_k/self.N) * self.likelihood_ber(Z_cond,i,k) #/ self.norm_lh
Z_cond[i,k]=0
P_Z_0=((self.N-m_without_i_k)/self.N) * self.likelihood_ber(Z_cond,i,k)
P_Z[i,k]=P_Z_1 / (P_Z_1 + P_Z_0)
print("proba Z=1:",P_Z[i,k])
return P_Z[i,:]
def m_without_i_k(self, Z, i, k):
result = 0
for j in range(self.N):
if j != i:
result += Z[j,k]
return result
def likelihood_ber(self, Z, i,k):
#LIKELIHOOD density of observation i, k fixed
result=1
num=1
den1=1
for d in range(self.D):
for k in range(self.K): #compute theta_d equation (7)
num=num*self.theta[k,d]**Z[i,k]
den1=den1*(1-self.theta[k,d])**Z[i,k]
theta_d=num/(den1+num)
result=result*bernoulli.pmf(k=self.X[i,d],p=theta_d) #compute likelihood
return result
def propose_new_clusters(self, i, P_Z, Z):
print("_________2.propose adding new clusters________")
for k in range(self.K):
if Z[i,k]==0 and np.random.uniform(0,1)<P_Z[i,k]:
print('accepted for k =', k)
Z[i,k]=1
return Z[i,:]
def resample_theta(self):
accept_rate=0
theta = np.copy(self.theta)
a = self.alpha_prior / self.K
std_prop=0.1
print("_______3.resample theta|Z,X using MHA_______")
for d in range(self.D):
#extract current theta_d at index k
theta_current = theta[:,d]
#if theta is too small or too close to one, redraw another theta so that theta_prop does not collapse
for k in range(self.K):
while (theta_current[k] < 10**(-2) or theta_current[k] > 0.95):
print("redraw theta",k)
theta_current[k]=beta.rvs(a,1)
#draw a proposal parameter centered around its current value
theta_prop = self.proposal_beta(theta_current)
#joint prior BETA(alpha/K,1) density over current and proposed parameters
prior_theta_current = beta.pdf(theta_current, a, 1)
prior_theta_prop = beta.pdf(theta_prop, a, 1)
#likelihood densities
lh_theta_current = self.likelihood_ber_d(theta_current, d)
lh_theta_prop = self.likelihood_ber_d(theta_prop, d)
for k in range(self.K):
#transition probabilities theta|theta_prop and theta_prop|theta
trans_theta_current = self.trans_proba_beta(theta_current, theta_prop, k)
trans_theta_prop = self.trans_proba_beta(theta_prop, theta_current, k)
#accept/reject probability
numerator = np.dot(lh_theta_prop,prior_theta_prop) * trans_theta_current
denominator = np.dot(lh_theta_current,prior_theta_current) * trans_theta_prop
accept_proba= numerator / denominator
if np.random.uniform(0,1)< min(accept_proba,1):
theta[k,d]=theta_prop[k]
print("accept")
accept_rate=accept_rate+1
accept_rate=accept_rate/(self.K*self.D)
return (theta,accept_rate)
def resample_theta_rw(self):
accept_rate=0
theta = np.copy(self.theta)
a = self.alpha_prior / self.K
std_prop=0.1 #standard deviation of truncated normal RW proposal
print("_______3.resample theta|Z,X using MHA_______")
for d in range(self.D):
#extract current theta_d at index k
theta_current = theta[:,d]
#if theta is too small or too close to one, redraw another theta so that theta_prop does not collapse
for k in range(self.K):
while (theta_current[k] < 10**(-3) or theta_current[k] > 0.95):
print("redraw theta",k)
theta_current[k]=beta.rvs(a,1)
#draw a proposal parameter centered around its current value
#random walk proposal, gaussian truncated to interval (0,1)
theta_prop=truncnorm.rvs(a=(0-theta_current)/std_prop,b=(1-theta_current)/std_prop,
loc=theta_current,scale=std_prop,size=self.K)
#joint prior BETA(alpha/K,1) density over current and proposed parameters
prior_theta_current = beta.pdf(theta_current, a, 1)
prior_theta_prop = beta.pdf(theta_prop, a, 1)
#likelihood densities
lh_theta_current = self.likelihood_ber_d(theta_current, d)
lh_theta_prop = self.likelihood_ber_d(theta_prop, d)
for k in range(self.K):
#transition probabilities theta|theta_prop and theta_prop|theta
trans_theta_current = norm.cdf(theta_current[k]/theta_prop[k],loc=0,scale=1)
trans_theta_prop = norm.cdf(theta_prop[k]/theta_current[k],loc=0,scale=1)
#accept/reject probability
numerator = np.dot(lh_theta_prop,prior_theta_prop) * trans_theta_current
denominator = np.dot(lh_theta_current,prior_theta_current) * trans_theta_prop
accept_proba= numerator / denominator
if np.random.uniform(0,1)< min(accept_proba,1):
print("accept")
theta[k,d]=theta_prop[k]
accept_rate=accept_rate+1
accept_rate=accept_rate/(self.K*self.D)
return (theta,accept_rate)
def proposal_beta(self, theta_d):
omega = self.omega
return (beta.rvs(omega*theta_d,omega*(1-theta_d)))
def trans_proba_beta(self, theta, theta_param, k):
#transition probability
omega = self.omega
theta_param_value = theta_param[k]
theta_value = theta[k]
return (beta.pdf(theta_value,omega*theta_param_value,omega*(1-theta_param_value)))
def likelihood_ber_d(self, theta_vect, d):
#LIKELIHOOD OF K DIMENSIONAL ARRAY (for MHA algo)
lh=np.zeros(self.K)
log_theta_ratio = np.log(theta_vect/(1-theta_vect))
temp = 0
for i in range(self.N):
temp += self.Z_temp[i,:] * self.X[i,d] * log_theta_ratio
lh = np.exp(temp)
return lh