diff --git a/NAMESPACE b/NAMESPACE index 0174144..de3f16a 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -9,4 +9,4 @@ export(multiSampleComparisonClonalCN) export(pipelineCNA) export(plotAllSubclonalCN) export(top30classification) -useDynLib(SCEVAN, .registration=TRUE) \ No newline at end of file +useDynLib(SCEVAN, .registration=TRUE) diff --git a/R/pipelineCNA.R b/R/pipelineCNA.R index 7b06ef3..cdd2838 100644 --- a/R/pipelineCNA.R +++ b/R/pipelineCNA.R @@ -12,18 +12,16 @@ NULL #> NULL - - #' pipelineCNA Executes the entire SCEVAN pipeline that classifies tumour and normal cells from the raw count matrix, infer the clonal profile of cancer cells and looks for possible sub-clones in the tumour cell matrix automatically analysing the specific and shared alterations of each subclone and a differential analysis of pathways and genes expressed in each subclone. #' -#' @param count_mtx raw count matrix -#' @param sample sample name (optional) -#' @param par_cores number of cores (default 20) -#' @param norm_cell vector of normal cells if already known (optional) -#' @param SUBCLONES find subclones (default TRUE) -#' @param beta_vega specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (default 0.5) -#' @param ClonalCN clonal profile inference from tumour cells (optional) -#' @param plotTree find subclones (optional) +#' @param count_mtx Raw count matrix with genes on rows (both Gene Symbol or Ensembl ID are allowed) and cells on columns. +#' @param sample Sample name to save results (optional) +#' @param par_cores Number of cores to run the pipeline (optional - default 20) +#' @param norm_cell Vector of normal cells if the classification is already known and you are only interested in the clonal structure (optional) +#' @param SUBCLONES Boolean value TRUE if you are interested in analysing the clonal structure and FALSE if you are only interested in the classification of malignant and non-malignant cells (optional - default TRUE) +#' @param beta_vega Specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (optional - default 0.5) +#' @param ClonalCN Get clonal CN profile inference from all tumour cells (optional) +#' @param plotTree Plot Phylogenetic tree (optional - default FALSE) #' @param AdditionalGeneSets list of additional signatures of normal cell types (optional) #' @param SCEVANsignatures FALSE if you only want to use only the signatures specified in AdditionalGeneSets (default TRUE) #' @param organism Organism to be analysed (optional - "mouse" or "human" - default "human") diff --git a/README.md b/README.md index 10e7ead..d6de3d4 100644 --- a/README.md +++ b/README.md @@ -27,14 +27,14 @@ A single call (pipelineCNA) allows the execution of the entire analysis of class - ***count_mtx*** : Count matrix with genes on rows (both Gene Symbol or Ensembl ID are allowed) and cells on columns. - ***sample*** : Sample name to save results (optional) - ***par_cores*** : Number of cores to run the pipeline (optional - default 20) -- ***norm_cells*** : vectors of normal cells if the classification is already known and you are only interested in the clonal structure (optional) -- ***SUBCLONES*** : Boolean value TRUE if you are interested in analysing the clonal structure and FALSE if you are only interested in the classification of malignant and non-malignant cells (optional - default 20) +- ***norm_cells*** : Vector of normal cells if the classification is already known and you are only interested in the clonal structure (optional) +- ***SUBCLONES*** : Boolean value TRUE if you are interested in analysing the clonal structure and FALSE if you are only interested in the classification of malignant and non-malignant cells (optional - default TRUE) - ***beta_vega*** : Specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (optional - default 0.5) - ***ClonalCN*** : Get clonal CN profile inference from all tumour cells (optional) - ***plotTree*** : Plot Phylogenetic tree (optional - default FALSE) - ***AdditionalGeneSets*** : list of additional signatures of normal cell types (optional) - ***SCEVANsignatures*** : FALSE if you only want to use only the signatures specified in AdditionalGeneSets(optional - default TRUE) -- ***organism*** : Organism to be analysed (optional - default human) +- ***organism*** : Organism to be analysed (optional - "mouse" or "human" - default "human") ``` results <- pipelineCNA(count_mtx) @@ -45,7 +45,7 @@ A single call (multiSampleComparisonClonalCN) allows the comparison of clonal pr - ***listCountMtx*** : Named list of raw count matrix of samples to be analysed - ***analysisName*** : Name of the analysis (optional) -- ***organism*** : Organism to be analysed (default human) +- ***organism*** : Organism to be analysed (optional - "mouse" or "human" - default "human") - ***par_cores*** : Number of cores (default 20) ``` diff --git a/man/pipelineCNA.Rd b/man/pipelineCNA.Rd index 14c4463..b54b41b 100644 --- a/man/pipelineCNA.Rd +++ b/man/pipelineCNA.Rd @@ -19,21 +19,21 @@ pipelineCNA( ) } \arguments{ -\item{count_mtx}{raw count matrix} +\item{count_mtx}{Raw count matrix with genes on rows (both Gene Symbol or Ensembl ID are allowed) and cells on columns.} -\item{sample}{sample name (optional)} +\item{sample}{Sample name to save results (optional)} -\item{par_cores}{number of cores (default 20)} +\item{par_cores}{Number of cores to run the pipeline (optional - default 20)} -\item{norm_cell}{vector of normal cells if already known (optional)} +\item{norm_cell}{Vector of normal cells if the classification is already known and you are only interested in the clonal structure (optional)} -\item{SUBCLONES}{find subclones (default TRUE)} +\item{SUBCLONES}{Boolean value TRUE if you are interested in analysing the clonal structure and FALSE if you are only interested in the classification of malignant and non-malignant cells (optional - default TRUE)} -\item{beta_vega}{specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (default 0.5)} +\item{beta_vega}{Specifies beta parameter for segmentation, higher beta for more coarse-grained segmentation. (optional - default 0.5)} -\item{ClonalCN}{clonal profile inference from tumour cells (optional)} +\item{ClonalCN}{Get clonal CN profile inference from all tumour cells (optional)} -\item{plotTree}{find subclones (optional)} +\item{plotTree}{Plot Phylogenetic tree (optional - default FALSE)} \item{AdditionalGeneSets}{list of additional signatures of normal cell types (optional)}