GATE is a comprehensive benchmarking suite that aims to fill a gap in the evaluation of foundation models. Typically, foundation model evaluation overlooks the diverse applicability found in real-world settings. GATE is designed for multi-modal and multi-task scenarios, stress-testing models in a variety of domains beyond their initial training.
- Facilitates the transfer of neural network trunks across different modalities, domains, and tasks, promoting robust fine-tuning for visual tasks.
- Maximizes research signal per GPU hour through carefully selected scenarios.
- Enables straightforward replacement of transferable trunks with minimal effort.
git clone https://github.com/AntreasAntoniou/GATE.git
cd GATE
pip install -r requirements.txt
pip install -e . # for local dev editable mode
or
pip install .
For development purposes, use the requirements_dev.txt file:
pip install -r requirements_dev.txt
Once you install gate, you should configure it using
gate config
Follow the onscreen instructions to acquire all necessary API keys and set them up. 😸
python gate/tiers/builder.py --experiment_type=all | python gate/tiers/run_experiments.py 1;
Which will build the full GATE tier and run it on one GPU. Small, Base And Big GATE will be added very shortly as an explicit option.
accelerate launch gate/run.py exp_name=beta-coco-10k-BART-123 encoder=bart encoder.image_size=224 encoder.pretrained=True encoder.clip_model_name=openai/clip-vit-base-patch16 encoder.bart_model_name=facebook/bart-base encoder.num_projection_features=768 adapter=segmentation-adapter adapter.loss_type_id=default dataset=coco_10k optimizer.lr=6e-06 optimizer.weight_decay=0.01 trainer=image_semantic_segmentation evaluator=image_semantic_segmentation num_workers=24 seed=123 train_batch_size=8 eval_batch_size=8 train_iters=10000 learner.evaluate_every_n_steps=500#### 1. Run the GATE tiers on the models presented in the original paper
Section under construction.
GATE can be used as a template for your research project. It provides full Hydra integration and includes boilerplate, models, datasets, trackers, and more. Note that using GATE as a template may involve a lot of overhead and time to learn, and may be complex.
GATE can be used as a library in your Python projects. Here is a basic example:
## Importing the Dataset
# To import and use the Happywhale dataset, you can use the `build_dataset` and `build_gate_dataset` functions from the GATE library. Here's how to do it:
import os
import torch
import torchvision.transforms as T
from gate.data.image.classification.happywhale import build_dataset, build_gate_dataset
# Set the data directory
data_dir = "path/to/your/data"
# Build the main dataset
main_dataset = build_dataset(data_dir=data_dir)
# Check if the train set is available
assert main_dataset["train"] is not None, "Train set should be available"
# Define a transform function
def default_transforms(input_dict):
input_dict["image"] = T.ToTensor()(input_dict["image"])
return input_dict
# Build the GATE dataset with transforms
gate_dataset = build_gate_dataset(
data_dir=data_dir,
transforms=default_transforms,
)
# Create a DataLoader for the training set
gate_dataloader = torch.utils.data.DataLoader(
gate_dataset["train"], batch_size=64, shuffle=True, num_workers=24
)
# Verify the dataset splits
assert gate_dataset["train"] is not None, "Train set should be available"
assert gate_dataset["val"] is not None, "Validation set should be available"
assert gate_dataset["test"] is not None, "Test set should be available"
# Iterate through the dataset
for item in gate_dataloader:
# Access the data
images = item["image"]
individual_labels = item["labels"]["individual"]
species_labels = item["labels"]["species"]
# Your processing code here
...
break # Remove this line to process all batches
This section demonstrates how to use various models provided by the GATE library for different modalities and tasks.
GATE provides a variety of model adapters for different modalities:
- Image: TimmCLIPAdapter, CLIPVisionAdapter
- Text: CLIPTextAdapter, BertAdapter, MPNetAdapter, BartAdapter
- Audio: WhisperAdapter, Wav2VecV2Adapter
Here's an example of how to use these models with a Prototypical Network for few-shot classification:
import torch
from gate.models.backbones.timm import CLIPModelPaths, TimmCLIPAdapter
from gate.models.task_adapters.few_shot_classification.protonet import PrototypicalNetwork
from gate.models.core import GATEModel
# Initialize the encoder
encoder = TimmCLIPAdapter(
timm_model_name="tf_efficientnetv2_s_in21ft1k",
clip_model_name=CLIPModelPaths.openai_b_16,
num_projection_features=64
)
# Create the Prototypical Network model
model = PrototypicalNetwork(encoder=encoder, num_output_features=512)
# Wrap the model with GATEModel
gate_model = GATEModel(config=model.modality_config, model=model)
# Prepare input data
support_set_inputs = torch.rand(2, 2, 3, 224, 224)
query_set_inputs = torch.rand(2, 2, 3, 224, 224)
support_set_labels = torch.randint(0, 2, (2, 2))
query_set_labels = torch.randint(0, 2, (2, 2))
# Create input dictionary
input_dict = {
"image": {
"support_set": support_set_inputs,
"query_set": query_set_inputs,
},
"labels": {
"support_set": support_set_labels,
"query_set": query_set_labels,
},
}
# Apply transforms
input_dict = model.adapter_transforms(input_dict)
# Forward pass
output = gate_model.forward(input_dict)
# Access results
logits = output["image"]["image"]["logits"]
loss = output["image"]["image"]["loss"]
# Backward pass
loss.backward()
GATE can be used as a library to generate experiments. Here is an example:
builder = gate.build_experiments(model=GATEModel(), gate_flavour="base")
experiments = builder.generate_experiments()
builder.run_experiments()
A high-level overview of the project's structure is given below:
.
├── boilerplate/
│ ├── callbacks.py
│ ├── convenience.py
│ ├── core.py
│ ├── decorators.py
│ ├── utils.py
│ └── wandb_utils.py
├── config/
│ ├── config.py
│ └── variables.py
├── data/
│ ├── few_shot/
│ ├── image/
│ ├── image_text/
│ ├── medical/
│ ├── tasks/
│ ├── transforms/
│ ├── video/
│ └── core.py
├── menu/
│ ├── configs/
│ ├── builder.py
│ ├── collector.py
│ ├── core.py
│ └── utils.py
├── metrics/
│ ├── core.py
│ ├── glossary.py
│ ├── multi_class_classification.py
│ ├── segmentation.py
│ └── vqa_eval.py
├── models/
│ ├── backbones/
│ ├── blocks/
│ ├── task_adapters/
│ └── core.py
├── orchestration/
│ ├── evaluators/
│ ├── trainers/
│ └── utils/
├── dummy_module.py
└── run.py
For a more detailed description of the individual files and directories, please refer to the comments in the respective files.