generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
64 lines (51 loc) · 1.95 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# @package _global_
# specify here default training configuration
defaults:
- _self_
- trainer: default.yaml
- model: milli_modus_prime_vi-transformer16.yaml
- datamodule: tali.yaml
- callbacks: wandb.yaml
- logger: wandb.yaml # set logger here or use command line (e.g. `python run.py logger=wandb`)
# modes are special collections of config options for different purposes, e.g. debugging
- mode: default.yaml
# enable color logging
- hydra: logging.yaml
resume: True
checkpoint_path: null
dataloading_only_run: False
visualize_data_locally: False
wandb_visualization_config:
visualize_data_in_wandb: False
visualize_preds_in_wandb: False
upload_interval_in_num_samples: 100
num_samples_to_upload_per_set: 10000
sets_to_upload:
- train
- val
- test
# pretty print config at the start of the run using Rich library
print_config: True
# disable python warnings if they annoy you
ignore_warnings: True
logging_level: INFO
# evaluate on test set, using best model weights achieved during training
# lightning chooses best weights based on metric specified in checkpoint callback
test_after_training: True
batch_size: null
# seed for random number generators in pytorch, numpy and python.random
seed : 0
wandb_project_name: ${env:WANDB_PROJECT}
# name of the run, should be used along with experiment mode
name: ${datamodule.dataset_config.dataset_name}-${model.name}-${datamodule.dataset_config.modality_config.name}-${seed}
# path to original working directory
# hydra hijacks working directory by changing it to the new log directory
# so it's useful to have this path as a special variable
# https://hydra.cc/docs/next/tutorials/basic/running_your_app/working_directory
code_dir: ${hydra:runtime.cwd}
root_experiment_dir: ${env:EXPERIMENTS_DIR}
current_experiment_dir: ${root_experiment_dir}/${name}/
# path to folder with data
train_data_dir: ${env:TRAIN_DATASET_DIR}
val_data_dir: ${env:VAL_DATASET_DIR}
test_data_dir: ${env:TEST_DATASET_DIR}