-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ddpg_lunar_lander.py
43 lines (34 loc) · 1.15 KB
/
run_ddpg_lunar_lander.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from baselines.ddpg import DDPG2
from baselines import NormalNoise
import gym
import tensorflow as tf
import time
from baselines.deps.vec_env.vec_normalize import VecNormalize
from baselines.deps.vec_env.dummy_vec_env import DummyVecEnv
if __name__ == '__main__':
env = gym.make('LunarLanderContinuous-v2')
env = DummyVecEnv([lambda: env]) # The algorithms require a vectorized environment to run
env = VecNormalize(env, norm_obs=True, norm_reward=False,clip_obs=10.)
kwargs = dict(
nb_train_steps=250,
nb_rollout_steps=500,
tau=0.001,
batch_size=1024,
actor_lr=1e-3,
critic_lr=1e-3,
buffer_size=50000
)
policy_kwargs = dict()
policy_kwargs['act_fun'] = tf.nn.relu
policy_kwargs['layers'] = [64, 64, 64]
kwargs['policy_kwargs'] = policy_kwargs
stddev = 0.25
kwargs['action_noise'] = NormalNoise(stddev)
model = DDPG2(env, **kwargs)
model.learn(total_timesteps=1e6)
obs = env.reset()
for i in range(1000):
action, _states = model.predict(obs)
obs, rewards, dones, info = env.step(action)
env.render()
time.sleep(0.017)