forked from nysamnang/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphBridges.js
95 lines (83 loc) · 3.3 KB
/
graphBridges.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import depthFirstSearch from '../depth-first-search/depthFirstSearch';
/**
* Helper class for visited vertex metadata.
*/
class VisitMetadata {
constructor({ discoveryTime, lowDiscoveryTime }) {
this.discoveryTime = discoveryTime;
this.lowDiscoveryTime = lowDiscoveryTime;
}
}
/**
* @param {Graph} graph
* @return {Object}
*/
export default function graphBridges(graph) {
// Set of vertices we've already visited during DFS.
const visitedSet = {};
// Set of bridges.
const bridges = {};
// Time needed to discover to the current vertex.
let discoveryTime = 0;
// Peek the start vertex for DFS traversal.
const startVertex = graph.getAllVertices()[0];
const dfsCallbacks = {
/**
* @param {GraphVertex} currentVertex
*/
enterVertex: ({ currentVertex }) => {
// Tick discovery time.
discoveryTime += 1;
// Put current vertex to visited set.
visitedSet[currentVertex.getKey()] = new VisitMetadata({
discoveryTime,
lowDiscoveryTime: discoveryTime,
});
},
/**
* @param {GraphVertex} currentVertex
* @param {GraphVertex} previousVertex
*/
leaveVertex: ({ currentVertex, previousVertex }) => {
if (previousVertex === null) {
// Don't do anything for the root vertex if it is already current (not previous one).
return;
}
// Check if current node is connected to any early node other then previous one.
visitedSet[currentVertex.getKey()].lowDiscoveryTime = currentVertex.getNeighbors()
.filter(earlyNeighbor => earlyNeighbor.getKey() !== previousVertex.getKey())
.reduce(
/**
* @param {number} lowestDiscoveryTime
* @param {GraphVertex} neighbor
*/
(lowestDiscoveryTime, neighbor) => {
const neighborLowTime = visitedSet[neighbor.getKey()].lowDiscoveryTime;
return neighborLowTime < lowestDiscoveryTime ? neighborLowTime : lowestDiscoveryTime;
},
visitedSet[currentVertex.getKey()].lowDiscoveryTime,
);
// Compare low discovery times. In case if current low discovery time is less than the one
// in previous vertex then update previous vertex low time.
const currentLowDiscoveryTime = visitedSet[currentVertex.getKey()].lowDiscoveryTime;
const previousLowDiscoveryTime = visitedSet[previousVertex.getKey()].lowDiscoveryTime;
if (currentLowDiscoveryTime < previousLowDiscoveryTime) {
visitedSet[previousVertex.getKey()].lowDiscoveryTime = currentLowDiscoveryTime;
}
// Compare current vertex low discovery time with parent discovery time. Check if there
// are any short path (back edge) exists. If we can't get to current vertex other then
// via parent then the parent vertex is articulation point for current one.
const parentDiscoveryTime = visitedSet[previousVertex.getKey()].discoveryTime;
if (parentDiscoveryTime < currentLowDiscoveryTime) {
const bridge = graph.findEdge(previousVertex, currentVertex);
bridges[bridge.getKey()] = bridge;
}
},
allowTraversal: ({ nextVertex }) => {
return !visitedSet[nextVertex.getKey()];
},
};
// Do Depth First Search traversal over submitted graph.
depthFirstSearch(graph, startVertex, dfsCallbacks);
return bridges;
}