-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
359 lines (299 loc) · 13.1 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import settings
from langchain_google_genai import GoogleGenerativeAI,GoogleGenerativeAIEmbeddings,ChatGoogleGenerativeAI
from langchain_community.document_loaders import CSVLoader
from langchain_community.document_loaders import UnstructuredURLLoader,PyPDFLoader,WebBaseLoader
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.summarize import load_summarize_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_groq import ChatGroq
from dotenv import load_dotenv
import google.generativeai as genai
from youtube_transcript_api import YouTubeTranscriptApi
from PyPDF2 import PdfReader
import sqlite3
from langchain_community.embeddings import GooglePalmEmbeddings
import tempfile
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.schema import HumanMessage
from llama_index.llms.groq import Groq
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from llama_index.core import SimpleDirectoryReader,VectorStoreIndex
from llama_index import core
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.query_engine import RouterQueryEngine
import shutil
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
PaLM_embeddings = GooglePalmEmbeddings(google_api_key=os.getenv("GOOGLE_API_KEY"))
google_embedding = GoogleGenerativeAIEmbeddings(model = settings.GOOGLE_EMBEDDING)
'''
if you want you can try instructor embeddings also. Below is thge code :
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=os.getenv("HUGGINGFACE_API_KEY"), model_name=settings.INSTRUCTOR_EMBEDDING,query_instruction="Represent the query for retrieval: "
)
'''
def get_gemini_response(input, image_file, prompt):
try:
print(prompt,input)
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
response = model.generate_content([input, image_file[0], prompt])
return response.text
except Exception as e:
return f"Error: {str(e)}"
def get_gemini_response_health(image_file, prompt):
try:
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
response = model.generate_content([image_file[0], prompt])
return response.text
except Exception as e:
return f"Error: {str(e)}"
def create_vector_db():
loader = CSVLoader(file_path=settings.FAQ_FILE)
data = loader.load()
vectordb = FAISS.from_documents(documents = data,embedding=PaLM_embeddings)
vectordb.save_local(settings.VECTORDB_PATH)
def get_qa_chain():
llm = GoogleGenerativeAI(model= settings.GEMINI_FLASH, google_api_key=os.getenv("GOOGLE_API_KEY"),temperature=0.2)
vectordb = FAISS.load_local(settings.VECTORDB_PATH,google_embedding,allow_dangerous_deserialization=True)
retriever = vectordb.as_retriever(score_threshold=0.7)
PROMPT = PromptTemplate(
template=settings.qa_prompt, input_variables=["context", "question"]
)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=retriever,
input_key="query",
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT})
return chain
def get_url_doc_qa(url,doc):
llm = GoogleGenerativeAI(model= settings.GEMINI_FLASH, google_api_key=os.getenv("GOOGLE_API_KEY"),temperature=0.3)
if url:
loader = WebBaseLoader(url)
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=['\n\n', '\n', '.', ','],
chunk_size=1000,
chunk_overlap = 200
)
docs = text_splitter.split_documents(data)
else:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200,length_function=len,is_separator_regex=False)
docs = text_splitter.create_documents(doc)
vectorstore = FAISS.from_documents(documents = docs,embedding=google_embedding)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
input_key="query",
return_source_documents=True)
return chain
def extract_transcript_details(youtube_video_url):
try:
video_id=youtube_video_url.split("=")[1]
transcript_text=YouTubeTranscriptApi.get_transcript(video_id)
transcript = ""
for i in transcript_text:
transcript += " " + i["text"]
return transcript
except Exception as e:
raise e
def get_gemini_pdf(pdf):
text = "".join(page.extract_text() for page in PdfReader(pdf).pages)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
vector_store = FAISS.from_texts(chunks, embedding=google_embedding)
llm = GoogleGenerativeAI(model= settings.GEMINI_FLASH, google_api_key=os.getenv("GOOGLE_API_KEY"),temperature=0.7)
retriever = vector_store.as_retriever(score_threshold=0.7)
PROMPT = PromptTemplate(
template=settings.prompt_pdf, input_variables=["context", "question"]
)
chain = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=retriever,
input_key="query",
return_source_documents=True,
chain_type_kwargs={"prompt": PROMPT})
return chain
def read_sql_query(query,db):
conn=sqlite3.connect(db)
cur=conn.cursor()
cur.execute(query)
rows=cur.fetchall()
conn.commit()
conn.close()
for row in rows:
print(row)
return rows
def remove_substrings(input_string):
modified_string = input_string.replace("/n", "")
modified_string = modified_string.replace("/", "")
return modified_string
def questions_generator(doc):
# loader = PdfReader(doc)
# data = loader.load()
question_gen = "".join(page.extract_text() for page in PdfReader(doc).pages)
# for page in data:
# question_gen += page.page_content
splitter_ques_gen = TokenTextSplitter(
chunk_size = 10000,
chunk_overlap = 200
)
chunks_ques_gen = splitter_ques_gen.split_text(question_gen)
document_ques_gen = [Document(page_content=t) for t in chunks_ques_gen]
# splitter_ans_gen = TokenTextSplitter(chunk_size = 1000,chunk_overlap = 100)
# document_answer_gen = splitter_ans_gen.split_documents(document_ques_gen)
llm_ques_gen_pipeline = ChatGoogleGenerativeAI(model= settings.GEMINI_FLASH,google_api_key=os.getenv("GOOGLE_API_KEY"),temperature=0.3)
PROMPT_QUESTIONS = PromptTemplate(template=settings.question_prompt_template, input_variables=["text"])
REFINE_PROMPT_QUESTIONS = PromptTemplate(input_variables=["existing_answer", "text"],template=settings.question_refine_template)
ques_gen_chain = load_summarize_chain(llm = llm_ques_gen_pipeline,
chain_type = "refine",
verbose = False,
question_prompt=PROMPT_QUESTIONS,
refine_prompt=REFINE_PROMPT_QUESTIONS)
ques = ques_gen_chain.invoke(document_ques_gen)
return ques
def groq_pdf(pdf,model):
llm = ChatGroq(
api_key=os.environ['GROQ_API_KEY'],
model_name=model
)
text = "".join(page.extract_text() for page in PdfReader(pdf).pages)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_text(text)
vectorstore = FAISS.from_texts(chunks, embedding=google_embedding)
retriever = vectorstore.as_retriever()
rag_template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
rag_prompt = ChatPromptTemplate.from_template(rag_template)
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
return rag_chain
async def summarize_audio(audio_file):
"""Summarize the audio using Google's Generative API."""
model = genai.GenerativeModel("models/gemini-1.5-pro-latest")
# Save the audio file to a temporary file
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.'+audio_file.filename.split('.')[-1]) as tmp_file:
tmp_file.write(await audio_file.read())
audio_file_path = tmp_file.name
except Exception as e:
raise Exception(f"Error handling uploaded file: {e}")
audio_file = genai.upload_file(path=audio_file_path)
response = model.generate_content(
[
"Please summarize the following audio.",
audio_file
]
)
return response.text
async def chatbot_send_message(content: str,model: str) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatGroq(
temperature=0,
groq_api_key=os.environ['GROQ_API_KEY'],
model_name=model,
streaming=True,
verbose=True,
callbacks=[callback],
)
task = asyncio.create_task(
model.agenerate(messages=[[HumanMessage(content=content)]])
)
try:
async for token in callback.aiter():
yield token
except Exception as e:
print(f"Caught exception: {e}")
finally:
callback.done.set()
await task
def extraxt_pdf_text(uploaded_file):
reader=PdfReader(uploaded_file)
text=""
for page in range(len(reader.pages)):
page=reader.pages[page]
text+=str(page.extract_text())
return text
def advance_rag_llama_index(pdf,model,question):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.' + pdf.filename.split('.')[-1]) as tmp:
shutil.copyfileobj(pdf.file, tmp)
tmp_path = tmp.name
except Exception as e:
raise Exception(f"Error handling uploaded file: {e}")
finally:
pdf.file.close()
llm = Groq(model=model,api_key=os.getenv("GROQ_API_KEY"))
embed_model = HuggingFaceInferenceAPIEmbeddings(
api_key=os.getenv("HUGGINGFACE_API_KEY"), model_name=settings.INSTRUCTOR_EMBEDDING,query_instruction="Represent the query for retrieval: ")
core.Settings.llm = llm
core.Settings.embed_model = embed_model
docs = SimpleDirectoryReader(input_files=[tmp_path]).load_data()
index = VectorStoreIndex.from_documents(docs)
vector_tool = QueryEngineTool(
index.as_query_engine(),
metadata=ToolMetadata(
name="vector_search",
description="Useful for searching for specific facts."))
summary_tool = QueryEngineTool(
index.as_query_engine(response_mode="tree_summarize"),
metadata=ToolMetadata(
name="summary",
description="Useful for summarizing an entire document."))
query_engine = RouterQueryEngine.from_defaults(
[vector_tool, summary_tool], select_multi=False, verbose=True, llm=llm)
response = query_engine.query(question)
os.remove(tmp_path)
return str(response)
import re
def parse_sql_response(response):
# Split the response into individual SQL statements
sql_statements = re.split(r"(?<=\*\/)\n\n+", response)
# Format each SQL statement
formatted_sql_statements = []
for sql_statement in sql_statements:
if sql_statement.strip():
# Remove comments
sql_statement = re.sub(r'/\*.*?\*/', '', sql_statement, flags=re.DOTALL)
# Replace newlines and tabs with spaces
sql_statement = sql_statement.replace('\n', ' ').replace('\t', ' ')
# Add a newline after each semicolon
sql_statement = re.sub(r';(?!\s*CREATE|INSERT|SELECT|UPDATE|DELETE)', ';\n', sql_statement)
formatted_sql_statements.append(sql_statement.strip())
# Join the formatted SQL statements into a single string
formatted_response = '\n'.join(formatted_sql_statements)
return formatted_response
def extract_video_id(url):
video_id = None
regex_patterns = [
r"(?<=v=)[^#\&\?]*",
r"(?<=be/)[^#\&\?]*",
r"(?<=embed/)[^#\&\?]*",
r"(?<=youtu.be/)[^#\&\?]*"
]
for pattern in regex_patterns:
match = re.search(pattern, url)
if match:
video_id = match.group(0)
break
return video_id
if __name__ == "__main__":
create_vector_db()
chain = get_qa_chain()
print(chain.invoke("Do you have javascript course?"))