-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathexprtk_vectorized_binomial_model.cpp
156 lines (128 loc) · 6.06 KB
/
exprtk_vectorized_binomial_model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
**************************************************************
* C++ Mathematical Expression Toolkit Library *
* *
* Vectorized Binomial Option Pricing Model *
* Author: Arash Partow (1999-2024) *
* URL: https://www.partow.net/programming/exprtk/index.html *
* *
* Copyright notice: *
* Free use of the Mathematical Expression Toolkit Library is *
* permitted under the guidelines and in accordance with the *
* most current version of the MIT License. *
* https://www.opensource.org/licenses/MIT *
* SPDX-License-Identifier: MIT *
* *
**************************************************************
*/
#include <cstdio>
#include <string>
#include "exprtk.hpp"
template <typename T>
void vectorized_binomial_option_pricing_model()
{
typedef exprtk::symbol_table<T> symbol_table_t;
typedef exprtk::expression<T> expression_t;
typedef exprtk::parser<T> parser_t;
const std::string european_option_binomial_model_program =
" var dt := t / n; "
" var z := exp(r * dt); "
" var z_inv := 1 / z; "
" var u := exp(v * sqrt(dt)); "
" var u_inv := 1 / u; "
" var p_up := (z - u_inv) / (u - u_inv); "
" var p_down := 1 - p_up; "
" "
" var option_price[n + 1] := [0]; "
" "
" for (var i := 0; i <= n; i += 1) "
" { "
" var base_price := s * u^(n - 2i); "
" option_price[i] := "
" switch "
" { "
" case callput_flag == 'call' : max(base_price - k, 0); "
" case callput_flag == 'put' : max(k - base_price, 0); "
" }; "
" }; "
" "
" var p_u_zinv := z_inv * p_up; "
" var p_d_zinv := z_inv * p_down; "
" "
" for (var j := n - 1; j >= 0; j -= 1) "
" { "
" /* y_i <- a * x_i + b * y_(i+1) i:[0,j] */ "
" axpbsy(p_u_zinv, option_price, "
" p_d_zinv, 1, option_price, "
" 0, j); "
" }; "
" "
" option_price[0]; ";
T s = T( 100.00); // Spot / Stock / Underlying / Base price
T k = T( 110.00); // Strike price
T v = T( 0.30); // Volatility
T t = T( 2.22); // Years to maturity
T r = T( 0.05); // Risk free rate
T n = T(2000.00); // Number of time steps
std::string callput_flag;
exprtk::rtl::vecops::package<T> vecops_package;
symbol_table_t symbol_table;
symbol_table.add_variable("s",s);
symbol_table.add_variable("k",k);
symbol_table.add_variable("t",t);
symbol_table.add_variable("r",r);
symbol_table.add_variable("v",v);
symbol_table.add_constant("n",n);
symbol_table.add_stringvar("callput_flag",callput_flag);
symbol_table.add_package(vecops_package);
expression_t expression;
expression.register_symbol_table(symbol_table);
parser_t parser;
parser.compile(european_option_binomial_model_program,expression);
const std::size_t rounds = 2000;
T binomial_call_option_price = T(0);
T binomial_put_option_price = T(0);
{
callput_flag = "call";
exprtk::timer timer;
timer.start();
for (std::size_t r = 0; r < rounds; ++r)
{
binomial_call_option_price = expression.value();
}
timer.stop();
printf("BinomialOptionPrice(Type: %4s, BasePx: %5.3f, Strike: %5.3f, Time: %5.3f, RFR: %5.3f, Vol: %5.3f, Steps: %4.1f) = %10.6f "
"total time: %6.3fsec rate: %6.3fcalc/sec\n",
callput_flag.c_str(),
s, k, t, r, v, n,
binomial_call_option_price,
timer.time(),
rounds / timer.time());
}
{
callput_flag = "put";
exprtk::timer timer;
timer.start();
for (std::size_t r = 0; r < rounds; ++r)
{
binomial_put_option_price = expression.value();
}
timer.stop();
printf("BinomialOptionPrice(Type: %4s, BasePx: %5.3f, Strike: %5.3f, Time: %5.3f, RFR: %5.3f, Vol: %5.3f, Steps: %4.1f) = %10.6f "
"total time: %6.3fsec rate: %6.3fcalc/sec\n",
callput_flag.c_str(),
s, k, t, r, v, n,
binomial_put_option_price,
timer.time(),
rounds / timer.time());
}
const T put_call_parity_diff =
(binomial_call_option_price - binomial_put_option_price) -
(s - k * std::exp(-r * t));
printf("Put-Call parity difference: %20.17f\n", put_call_parity_diff);
}
int main()
{
vectorized_binomial_option_pricing_model<double>();
return 0;
}