-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathL3_cnn-v3.py
478 lines (376 loc) · 16.2 KB
/
L3_cnn-v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#Code for the deep learning of L3 structure
#This current iteration includes Q factor and modal volume V with CNN regression
#March 2021 Renjie Li, NOEL @ CUHK SZ
# %%
import torch
import torchvision
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pandas as pd
import numpy as np
import h5py
import torchvision.transforms as transforms
#initialize hypermeters
n_epochs = 300
batch_size_train = 64
batch_size_test = 100
learning_rate = 0.01
momentum = 0.5
L2reg = 0.001
log_interval = 10
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
class TensorsDataset(torch.utils.data.Dataset):
'''
A simple loading dataset - loads the tensor that are passed in input. This is the same as
torch.utils.data.TensorDataset except that you can add transformations to your data and target tensor.
Target tensor can also be None, in which case it is not returned.
'''
def __init__(self, data_tensor, target_tensor=None, transforms=None, target_transforms=None):
if target_tensor is not None:
assert data_tensor.size(0) == target_tensor.size(0)
self.data_tensor = data_tensor
self.target_tensor = target_tensor
if transforms is None:
transforms = []
if target_transforms is None:
target_transforms = []
if not isinstance(transforms, list):
transforms = [transforms]
if not isinstance(target_transforms, list):
target_transforms = [target_transforms]
self.transforms = transforms
self.target_transforms = target_transforms
def __getitem__(self, index):
data_tensor = self.data_tensor[index]
for transform in self.transforms:
data_tensor = transform(data_tensor)
if self.target_tensor is None:
return data_tensor
target_tensor = self.target_tensor[index]
for transform in self.target_transforms:
target_tensor = transform(target_tensor)
return data_tensor, target_tensor
def __len__(self):
return self.data_tensor.size(0)
#read data from mat file
print("loading the mat")
f = h5py.File('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/L3_dataset/Input.mat','r')
data = f['Input']
Input = np.array(data) # For converting to a NumPy array
f = h5py.File('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/L3_dataset/Output.mat','r')
data = f['QnV']
Output = np.array(data) # For converting to a NumPy array
print("converting to tensor")
input_tensor = torch.tensor(Input)
output_tensor = torch.tensor(Output)
#swap the axes
input_tensor = input_tensor.permute(3,2,1,0).float()
output_tensor = output_tensor.permute(1,0).float()
#output_tensor = output_tensor[:,0] #do Q first
output_tensor = output_tensor.view(-1,2) #correct the dimension
print(output_tensor[-1])
print(input_tensor.shape)
print(output_tensor.shape)
#produce the full dataset
transformer=transforms.Normalize(mean=[-8.7270e-13,3.3969e-13,-1.6978e-12], std=[0.0000000005,0.0000000005,0.0000000005])
dataset=TensorsDataset(input_tensor, output_tensor,transforms=transformer)
#split into training and test datasets
train_size = int(0.8 * len(dataset)) #80% of dataset for training
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
#load the data
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size_test, shuffle=True)
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
print(example_data.shape,example_targets.shape)
#set up the network
#create a class for the CNN
class Net(nn.Module):
#build the network (cnn+fc)
def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Conv2d(3,20, kernel_size=(3,3), padding = 1, bias=False)
self.conv2 = nn.Conv2d(20,40,kernel_size=(3,3),bias=False)
self.fc1 = nn.Linear(240,120)
self.fc2 = nn.Linear(120,50)
self.fc3 = nn.Linear(50,2)
#pass data to the CNN. x represents the data
def forward(self,x):
x = F.relu(F.avg_pool2d(self.conv1(x),(1,2)))
# print(x.shape)
x = F.relu(F.avg_pool2d(self.conv2(x),(1,2)))
# print(x.shape)
x = x.view(x.size(0),-1)
# print(x.shape)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# #initialize the network and the optimizer
network = Net()
print(network(example_data).shape)
optimizer = optim.SGD(network.parameters(), lr = learning_rate, momentum = momentum, weight_decay = L2reg)
#lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = len(train_loader), eta_min = 0)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, threshold=1e-4, threshold_mode='rel')
# #store the training results
train_losses = [] #for Q
trainV_losses = [] #for V
train_counter = []
test_losses = [] #for Q
testV_losses = [] #for V
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs+1)]
train_output = [] #for Q
trainV_output = [] #for V
train_target = [] #for Q
trainV_target = [] #for V
test_output = []
testV_output = []
test_target = []
testV_target = []
# train loop
def train(epoch):
#lr_scheduler.step()
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
#Save the training result
#Q
train_output.append(output.data[:,0])
train_target.append(target.data[:,0])
#V
trainV_output.append(output.data[:,1])
trainV_target.append(target.data[:,1])
#MSE loss
Q_loss = F.mse_loss(output[:,0],target[:,0])
V_loss = F.mse_loss(output[:,1],target[:,1])
loss = Q_loss + 10*V_loss
#calculate the gradient
loss.backward()
optimizer.step()
#gradually print epoch results
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{}]\tQloss:{:.6f}\tVloss:{:.6f}\tQ_NN: {:.4f}\tV_NN: {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
Q_loss.item(), V_loss.item(), output[-1,0], output[-1,1]))
#store training results
train_losses.append(Q_loss.item())
trainV_losses.append(V_loss.item())
train_counter.append(
(batch_idx*batch_size_train) + ((epoch-1)*len(train_loader.dataset)))
for param_group in optimizer.param_groups:
print("Current learning rate: {}".format(param_group['lr']))
#save the model
#torch.save(network.state_dict(), '/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/L3_model.pt')
#torch.save(optimizer.state_dict(), '/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/L3_optim.pt')
#test loop
def test():
#global test_output
network.eval()
test_loss = 0
testV_loss = 0
with torch.no_grad(): #disable the gradient computation
for data, target in test_loader:
output = network(data)
#save the test result
#Q
test_output.append(output[:,0])
test_target.append(target[:,0])
#V
testV_output.append(output[:,1])
testV_target.append(target[:,1])
#loss
test_loss += F.mse_loss(output[:,0], target[:,0], size_average=False).item()
testV_loss += F.mse_loss(output[:,1], target[:,1], size_average=False).item()
#calculate the average loss per epoch
test_loss /= len(test_loader.dataset)
testV_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
testV_losses.append(testV_loss)
print('\nTest set: Qloss: {:.6f}, Vloss: {:.6f}, Qn: {:.4f}, Qf: {:.4f}, Vn: {:.4f}, Vf: {:.4f}\n'.format(
test_loss, testV_loss, output[-1,0], target[-1,0], output[-1,1], target[-1,1]))
#save the model
if test_loss <= 0.0004:
torch.save(network.state_dict(), '/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/L3_model2.pt')
return testV_loss
#run the training
print("start training")
test()
for epoch in range(1,n_epochs+1):
train(epoch)
Loss = test()
#lr_scheduler.step(Loss)
print("finish training")
def pearson_r(x, y):
"""Compute Pearson correlation coefficient between two arrays."""
# Compute correlation matrix
corr_mat = np.corrcoef(x, y)
#calculate the coeff
pearson_R = corr_mat[0,1]
# Return entry [0,1]
return pearson_R
def pred_error(x,y):
"""Compute absolute percentage error between two arrays."""
diff = np.absolute(x - y)
percent_e = 100*diff/y
return percent_e
def movingAverage(interval, window_size):
""" Moving average filter (data smoothener) """
window = np.ones(int(window_size))/float(window_size)
return np.convolve(interval, window, 'same')
# Post processing of data
print(len(train_output))
print(len(test_output))
print(len(trainV_output))
print(len(testV_output))
#obtain and convert learning results from list to tensor
train_output = torch.cat(train_output, 0)
train_target = torch.cat(train_target, 0)
trainV_output = torch.cat(trainV_output, 0)
trainV_target = torch.cat(trainV_target, 0)
test_output = torch.cat(test_output,0)
test_target = torch.cat(test_target,0)
testV_output = torch.cat(testV_output,0)
testV_target = torch.cat(testV_target,0)
print(len(train_target))
print(len(test_target))
train_outputArr = train_output.numpy() #for Q
train_targetArr = train_target.numpy()
trainV_outputArr = trainV_output.numpy() #for V
trainV_targetArr = trainV_target.numpy()
test_outputArr = test_output.numpy()
test_targetArr = test_target.numpy()
testV_outputArr = testV_output.numpy()
testV_targetArr = testV_target.numpy()
print('Training dataset size: {}'.format(len(trainV_outputArr)))
print('Test dataset size: {}'.format(len(testV_outputArr)))
# %% performance metrics
def pearson_r(x, y):
"""Compute Pearson correlation coefficient between two arrays."""
# Compute correlation matrix
corr_mat = np.corrcoef(x, y)
#calculate the coeff
pearson_R = corr_mat[0,1]
# Return entry [0,1]
return pearson_R
#calculate the pearson correlation coefficient between output and target values
coeff_train = pearson_r(train_outputArr[len(train_outputArr)-10000:-1], train_targetArr[len(train_targetArr)-10000:-1])
coeff_test = pearson_r(test_outputArr[len(test_outputArr)-2500:-1], test_targetArr[len(test_targetArr)-2500:-1])
print('Training Q corr coeff: {:.3f}\tTest Q corr coeff: {:.3f}'.format(coeff_train, coeff_test))
coeffV_train = pearson_r(trainV_outputArr[len(trainV_outputArr)-10000:-1], trainV_targetArr[len(trainV_targetArr)-10000:-1])
coeffV_test = pearson_r(testV_outputArr[len(testV_outputArr)-2500:-1], testV_targetArr[len(testV_targetArr)-2500:-1])
print('Training V corr coeff: {:.3f}\tTest V corr coeff: {:.3f}'.format(coeffV_train, coeffV_test))
#calculate the prediction error between output and target values
def pred_error(x,y):
"""Compute absolute percentage error between two arrays."""
diff = np.absolute(x - y)
percent_e = 100*diff/y
return percent_e
predError_train = []
predError_test = []
predErrorV_train = []
predErrorV_test = []
for i in range(n_epochs):
predError_train.append(pred_error(np.mean(train_outputArr[i*10000:(i+1)*10000-1]), np.mean(train_targetArr[i*10000:(i+1)*10000-1])))
predErrorV_train.append(pred_error(np.mean(trainV_outputArr[i*10000:(i+1)*10000-1]), np.mean(trainV_targetArr[i*10000:(i+1)*10000-1])))
t = i+1
predError_test.append(pred_error(np.mean(test_outputArr[t*2500:(t+1)*2500-1]), np.mean(test_targetArr[t*2500:(t+1)*2500-1])))
predErrorV_test.append(pred_error(np.mean(testV_outputArr[t*2500:(t+1)*2500-1]), np.mean(testV_targetArr[t*2500:(t+1)*2500-1])))
print('Min pred error train: {:.8f}\nMin pred error test: {:.8f}'.format(min(predError_train), min(predError_test)))
print('Min mse train: {:.8f}\nMin mse test: {:.8f}'.format(min(train_losses), min(test_losses)))
print('V Min pred error train: {:.8f}\nV Min pred error test: {:.8f}'.format(min(predErrorV_train), min(predErrorV_test)))
print('V Min mse train: {:.8f}\nV Min mse test: {:.8f}'.format(min(trainV_losses), min(testV_losses)))
# %% plots
fig = plt.figure()
plt.plot([x / 10000 for x in train_counter],train_losses,color='blue')
plt.plot([x / 10000 for x in test_counter],test_losses, linewidth = 2,color = 'red')
plt.legend(['Train Loss','Test Loss'], loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Q Mean Squared Error')
#plt.ylim(-0.015,0.25)
plt.yscale('log')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Q_MSE_loss.eps')
fig = plt.figure()
plt.plot([x / 10000 for x in train_counter],trainV_losses,color='blue')
plt.plot([x / 10000 for x in test_counter],testV_losses, linewidth = 2,color = 'red')
plt.legend(['Train Loss','Test Loss'], loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('V Mean Squared Error')
#plt.ylim(-0.015,0.25)
plt.yscale('log')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/V_MSE_loss.eps')
fig = plt.figure()
plt.plot(np.linspace(1,n_epochs, num=n_epochs),predError_train,color='blue')
plt.plot(np.linspace(1,n_epochs, num=n_epochs),predError_test,color = 'red')
plt.legend(['Train error','Test error'], loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Prediction Error of Q (%)')
plt.yscale('log')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Q_pred_error.eps')
fig = plt.figure()
plt.plot(np.linspace(1,n_epochs, num=n_epochs),predErrorV_train,color='blue')
plt.plot(np.linspace(1,n_epochs, num=n_epochs),predErrorV_test,color = 'red')
plt.legend(['Train error','Test error'], loc='upper right')
plt.xlabel('Epochs')
plt.ylabel('Prediction Error of V (%)')
plt.yscale('log')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/V_pred_error.eps')
# %%
fig = plt.figure()
plt.ticklabel_format(axis='both', style='sci', scilimits=(0,0))
plt.scatter(10**(train_targetArr[len(train_targetArr)-10000:-1]),10**(train_outputArr[len(train_outputArr)-10000:-1]), s=5, color = 'purple')
plt.legend(['Training data (10k)\ncorrelation coeff 0.988'], loc='upper right')
x = np.linspace(0,8e5,10)
y = x
plt.plot(x,y,c = 'k')
plt.xlabel('Q_FDTD')
plt.ylabel('Q_NN')
plt.xlim(1e+5,7e+5)
plt.ylim(1e+5,7e+5)
plt.gca().set_aspect('equal', adjustable='box')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Qcorr_coeff_train.eps')
fig = plt.figure()
plt.ticklabel_format(axis='both', style='sci', scilimits=(0,0))
plt.scatter(10**(test_targetArr[len(test_targetArr)-2500:-1]),10**(test_outputArr[len(test_outputArr)-2500:-1]), s=5, color = 'purple')
plt.legend(['Test data (2500)\ncorrelation coeff 0.987'], loc='upper right')
x = np.linspace(0,8e5,10)
y = x
plt.plot(x,y,c = 'k')
plt.xlabel('Q_FDTD')
plt.ylabel('Q_NN')
plt.axis('square')
plt.xlim(1e+5,7e+5)
plt.ylim(1e+5,7e+5)
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Qcorr_coeff_test.eps')
fig = plt.figure()
plt.ticklabel_format(axis='both', style='sci', scilimits=(0,0))
plt.scatter((trainV_targetArr[len(trainV_targetArr)-10000:-1]),(trainV_outputArr[len(trainV_outputArr)-10000:-1]), s=5, color = 'purple')
plt.legend(['Training data (10k)\ncorrelation coeff 0.844'], loc='upper right')
x = np.linspace(0,1.5,5)
y = x
plt.plot(x,y,c = 'k')
plt.xlabel('V_FDTD')
plt.ylabel('V_NN')
plt.xlim(0.75,1.5)
plt.ylim(0.75,1.5)
plt.gca().set_aspect('equal', adjustable='box')
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Vcorr_coeff_train.eps')
fig = plt.figure()
plt.ticklabel_format(axis='both', style='sci', scilimits=(0,0))
plt.scatter((testV_targetArr[len(testV_targetArr)-2500:-1]),(testV_outputArr[len(testV_outputArr)-2500:-1]), s=5, color = 'purple')
plt.legend(['Test data (2500)\ncorrelation coeff 0.805'], loc='upper right')
x = np.linspace(0,1.5,5)
y = x
plt.plot(x,y,c = 'k')
plt.xlabel('V_FDTD')
plt.ylabel('V_NN')
plt.axis('square')
plt.xlim(0.75,1.5)
plt.ylim(0.75,1.5)
plt.savefig('/Users/Renjee/Desktop/CUHK/NOEL/Deep learning proj/code/Vcorr_coeff_test.eps')
# %%