From f487a25e09a9884c7d4007a32736f401fef99b2a Mon Sep 17 00:00:00 2001 From: Peter Barker Date: Tue, 19 Mar 2024 19:00:55 +1100 Subject: [PATCH] AP_GPS: move blended-GPS functions into AP_GPS_Blended collects all of these together in preparation for making a backend --- libraries/AP_GPS/AP_GPS.cpp | 379 --------------------------- libraries/AP_GPS/AP_GPS_Blended.cpp | 380 ++++++++++++++++++++++++++++ 2 files changed, 380 insertions(+), 379 deletions(-) create mode 100644 libraries/AP_GPS/AP_GPS_Blended.cpp diff --git a/libraries/AP_GPS/AP_GPS.cpp b/libraries/AP_GPS/AP_GPS.cpp index 671199d5dbbc98..ea1e69c9cbf1e3 100644 --- a/libraries/AP_GPS/AP_GPS.cpp +++ b/libraries/AP_GPS/AP_GPS.cpp @@ -66,10 +66,6 @@ #define GPS_BAUD_TIME_MS 1200 #define GPS_TIMEOUT_MS 4000u -// defines used to specify the mask position for use of different accuracy metrics in the blending algorithm -#define BLEND_MASK_USE_HPOS_ACC 1 -#define BLEND_MASK_USE_VPOS_ACC 2 -#define BLEND_MASK_USE_SPD_ACC 4 #define BLEND_COUNTER_FAILURE_INCREMENT 10 extern const AP_HAL::HAL &hal; @@ -1494,14 +1490,6 @@ bool AP_GPS::all_consistent(float &distance) const return (distance < 50); } -#if defined(GPS_BLENDED_INSTANCE) -// pre-arm check of GPS blending. True means healthy or that blending is not being used -bool AP_GPS::blend_health_check() const -{ - return (_blend_health_counter < 50); -} -#endif - /* re-assemble fragmented RTCM data */ @@ -1764,373 +1752,6 @@ uint16_t AP_GPS::get_rate_ms(uint8_t instance) const return MIN(params[instance].rate_ms, GPS_MAX_RATE_MS); } -#if defined(GPS_BLENDED_INSTANCE) -/* - calculate the weightings used to blend GPSs location and velocity data -*/ -bool AP_GPS::calc_blend_weights(void) -{ - // zero the blend weights - memset(&_blend_weights, 0, sizeof(_blend_weights)); - - - static_assert(GPS_MAX_RECEIVERS == 2, "GPS blending only currently works with 2 receivers"); - // Note that the early quit below relies upon exactly 2 instances - // The time delta calculations below also rely upon every instance being currently detected and being parsed - - // exit immediately if not enough receivers to do blending - if (state[0].status <= NO_FIX || state[1].status <= NO_FIX) { - return false; - } - - // Use the oldest non-zero time, but if time difference is excessive, use newest to prevent a disconnected receiver from blocking updates - uint32_t max_ms = 0; // newest non-zero system time of arrival of a GPS message - uint32_t min_ms = -1; // oldest non-zero system time of arrival of a GPS message - uint32_t max_rate_ms = 0; // largest update interval of a GPS receiver - for (uint8_t i=0; i max_ms) { - max_ms = state[i].last_gps_time_ms; - } - if ((state[i].last_gps_time_ms < min_ms) && (state[i].last_gps_time_ms > 0)) { - min_ms = state[i].last_gps_time_ms; - } - max_rate_ms = MAX(get_rate_ms(i), max_rate_ms); - if (isinf(state[i].speed_accuracy) || - isinf(state[i].horizontal_accuracy) || - isinf(state[i].vertical_accuracy)) { - return false; - } - } - if ((max_ms - min_ms) < (2 * max_rate_ms)) { - // data is not too delayed so use the oldest time_stamp to give a chance for data from that receiver to be updated - state[GPS_BLENDED_INSTANCE].last_gps_time_ms = min_ms; - } else { - // receiver data has timed out so fail out of blending - return false; - } - - // calculate the sum squared speed accuracy across all GPS sensors - float speed_accuracy_sum_sq = 0.0f; - if (_blend_mask & BLEND_MASK_USE_SPD_ACC) { - for (uint8_t i=0; i= GPS_OK_FIX_3D) { - if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f) { - speed_accuracy_sum_sq += sq(state[i].speed_accuracy); - } else { - // not all receivers support this metric so set it to zero and don't use it - speed_accuracy_sum_sq = 0.0f; - break; - } - } - } - } - - // calculate the sum squared horizontal position accuracy across all GPS sensors - float horizontal_accuracy_sum_sq = 0.0f; - if (_blend_mask & BLEND_MASK_USE_HPOS_ACC) { - for (uint8_t i=0; i= GPS_OK_FIX_2D) { - if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f) { - horizontal_accuracy_sum_sq += sq(state[i].horizontal_accuracy); - } else { - // not all receivers support this metric so set it to zero and don't use it - horizontal_accuracy_sum_sq = 0.0f; - break; - } - } - } - } - - // calculate the sum squared vertical position accuracy across all GPS sensors - float vertical_accuracy_sum_sq = 0.0f; - if (_blend_mask & BLEND_MASK_USE_VPOS_ACC) { - for (uint8_t i=0; i= GPS_OK_FIX_3D) { - if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f) { - vertical_accuracy_sum_sq += sq(state[i].vertical_accuracy); - } else { - // not all receivers support this metric so set it to zero and don't use it - vertical_accuracy_sum_sq = 0.0f; - break; - } - } - } - } - // Check if we can do blending using reported accuracy - bool can_do_blending = (horizontal_accuracy_sum_sq > 0.0f || vertical_accuracy_sum_sq > 0.0f || speed_accuracy_sum_sq > 0.0f); - - // if we can't do blending using reported accuracy, return false and hard switch logic will be used instead - if (!can_do_blending) { - return false; - } - - float sum_of_all_weights = 0.0f; - - // calculate a weighting using the reported horizontal position - float hpos_blend_weights[GPS_MAX_RECEIVERS] = {}; - if (horizontal_accuracy_sum_sq > 0.0f) { - // calculate the weights using the inverse of the variances - float sum_of_hpos_weights = 0.0f; - for (uint8_t i=0; i= GPS_OK_FIX_2D && state[i].horizontal_accuracy >= 0.001f) { - hpos_blend_weights[i] = horizontal_accuracy_sum_sq / sq(state[i].horizontal_accuracy); - sum_of_hpos_weights += hpos_blend_weights[i]; - } - } - // normalise the weights - if (sum_of_hpos_weights > 0.0f) { - for (uint8_t i=0; i 0.0f) { - // calculate the weights using the inverse of the variances - float sum_of_vpos_weights = 0.0f; - for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].vertical_accuracy >= 0.001f) { - vpos_blend_weights[i] = vertical_accuracy_sum_sq / sq(state[i].vertical_accuracy); - sum_of_vpos_weights += vpos_blend_weights[i]; - } - } - // normalise the weights - if (sum_of_vpos_weights > 0.0f) { - for (uint8_t i=0; i 0.0f) { - // calculate the weights using the inverse of the variances - float sum_of_spd_weights = 0.0f; - for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].speed_accuracy >= 0.001f) { - spd_blend_weights[i] = speed_accuracy_sum_sq / sq(state[i].speed_accuracy); - sum_of_spd_weights += spd_blend_weights[i]; - } - } - // normalise the weights - if (sum_of_spd_weights > 0.0f) { - for (uint8_t i=0; i state[GPS_BLENDED_INSTANCE].status) { - state[GPS_BLENDED_INSTANCE].status = state[i].status; - } - - // calculate a blended average velocity - state[GPS_BLENDED_INSTANCE].velocity += state[i].velocity * _blend_weights[i]; - - // report the best valid accuracies and DOP metrics - - if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f && state[i].horizontal_accuracy < state[GPS_BLENDED_INSTANCE].horizontal_accuracy) { - state[GPS_BLENDED_INSTANCE].have_horizontal_accuracy = true; - state[GPS_BLENDED_INSTANCE].horizontal_accuracy = state[i].horizontal_accuracy; - } - - if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f && state[i].vertical_accuracy < state[GPS_BLENDED_INSTANCE].vertical_accuracy) { - state[GPS_BLENDED_INSTANCE].have_vertical_accuracy = true; - state[GPS_BLENDED_INSTANCE].vertical_accuracy = state[i].vertical_accuracy; - } - - if (state[i].have_vertical_velocity) { - state[GPS_BLENDED_INSTANCE].have_vertical_velocity = true; - } - - if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f && state[i].speed_accuracy < state[GPS_BLENDED_INSTANCE].speed_accuracy) { - state[GPS_BLENDED_INSTANCE].have_speed_accuracy = true; - state[GPS_BLENDED_INSTANCE].speed_accuracy = state[i].speed_accuracy; - } - - if (state[i].hdop > 0 && state[i].hdop < state[GPS_BLENDED_INSTANCE].hdop) { - state[GPS_BLENDED_INSTANCE].hdop = state[i].hdop; - } - - if (state[i].vdop > 0 && state[i].vdop < state[GPS_BLENDED_INSTANCE].vdop) { - state[GPS_BLENDED_INSTANCE].vdop = state[i].vdop; - } - - if (state[i].num_sats > 0 && state[i].num_sats > state[GPS_BLENDED_INSTANCE].num_sats) { - state[GPS_BLENDED_INSTANCE].num_sats = state[i].num_sats; - } - - // report a blended average GPS antenna position - Vector3f temp_antenna_offset = params[i].antenna_offset; - temp_antenna_offset *= _blend_weights[i]; - _blended_antenna_offset += temp_antenna_offset; - - // blend the timing data - if (timing[i].last_fix_time_ms > timing[GPS_BLENDED_INSTANCE].last_fix_time_ms) { - timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = timing[i].last_fix_time_ms; - } - if (timing[i].last_message_time_ms > timing[GPS_BLENDED_INSTANCE].last_message_time_ms) { - timing[GPS_BLENDED_INSTANCE].last_message_time_ms = timing[i].last_message_time_ms; - } - } - - /* - * Calculate an instantaneous weighted/blended average location from the available GPS instances and store in the _output_state. - * This will be statistically the most likely location, but will be not stable enough for direct use by the autopilot. - */ - - // Use the GPS with the highest weighting as the reference position - float best_weight = 0.0f; - uint8_t best_index = 0; - for (uint8_t i=0; i best_weight) { - best_weight = _blend_weights[i]; - best_index = i; - state[GPS_BLENDED_INSTANCE].location = state[i].location; - } - } - - // Calculate the weighted sum of horizontal and vertical position offsets relative to the reference position - Vector2f blended_NE_offset_m; - float blended_alt_offset_cm = 0.0f; - blended_NE_offset_m.zero(); - for (uint8_t i=0; i 0.0f && i != best_index) { - blended_NE_offset_m += state[GPS_BLENDED_INSTANCE].location.get_distance_NE(state[i].location) * _blend_weights[i]; - blended_alt_offset_cm += (float)(state[i].location.alt - state[GPS_BLENDED_INSTANCE].location.alt) * _blend_weights[i]; - } - } - - // Add the sum of weighted offsets to the reference location to obtain the blended location - state[GPS_BLENDED_INSTANCE].location.offset(blended_NE_offset_m.x, blended_NE_offset_m.y); - state[GPS_BLENDED_INSTANCE].location.alt += (int)blended_alt_offset_cm; - - // Calculate ground speed and course from blended velocity vector - state[GPS_BLENDED_INSTANCE].ground_speed = state[GPS_BLENDED_INSTANCE].velocity.xy().length(); - state[GPS_BLENDED_INSTANCE].ground_course = wrap_360(degrees(atan2f(state[GPS_BLENDED_INSTANCE].velocity.y, state[GPS_BLENDED_INSTANCE].velocity.x))); - - // If the GPS week is the same then use a blended time_week_ms - // If week is different, then use time stamp from GPS with largest weighting - // detect inconsistent week data - uint8_t last_week_instance = 0; - bool weeks_consistent = true; - for (uint8_t i=0; i 0) { - // this is our first valid sensor week data - last_week_instance = state[i].time_week; - } else if (last_week_instance != 0 && _blend_weights[i] > 0 && last_week_instance != state[i].time_week) { - // there is valid sensor week data that is inconsistent - weeks_consistent = false; - } - } - // calculate output - if (!weeks_consistent) { - // use data from highest weighted sensor - state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; - state[GPS_BLENDED_INSTANCE].time_week_ms = state[best_index].time_week_ms; - } else { - // use week number from highest weighting GPS (they should all have the same week number) - state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; - // calculate a blended value for the number of ms lapsed in the week - double temp_time_0 = 0.0; - for (uint8_t i=0; i 0.0f) { - temp_time_0 += (double)state[i].time_week_ms * (double)_blend_weights[i]; - } - } - state[GPS_BLENDED_INSTANCE].time_week_ms = (uint32_t)temp_time_0; - } - - // calculate a blended value for the timing data and lag - double temp_time_1 = 0.0; - double temp_time_2 = 0.0; - for (uint8_t i=0; i 0.0f) { - temp_time_1 += (double)timing[i].last_fix_time_ms * (double) _blend_weights[i]; - temp_time_2 += (double)timing[i].last_message_time_ms * (double)_blend_weights[i]; - float gps_lag_sec = 0; - get_lag(i, gps_lag_sec); - _blended_lag_sec += gps_lag_sec * _blend_weights[i]; - } - } - timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = (uint32_t)temp_time_1; - timing[GPS_BLENDED_INSTANCE].last_message_time_ms = (uint32_t)temp_time_2; - -#if HAL_LOGGING_ENABLED - if (timing[GPS_BLENDED_INSTANCE].last_message_time_ms > last_blended_message_time_ms && - should_log()) { - Write_GPS(GPS_BLENDED_INSTANCE); - } -#endif -} -#endif // GPS_BLENDED_INSTANCE - bool AP_GPS::is_healthy(uint8_t instance) const { if (instance >= GPS_MAX_INSTANCES) { diff --git a/libraries/AP_GPS/AP_GPS_Blended.cpp b/libraries/AP_GPS/AP_GPS_Blended.cpp new file mode 100644 index 00000000000000..30f19ec9b8fb7c --- /dev/null +++ b/libraries/AP_GPS/AP_GPS_Blended.cpp @@ -0,0 +1,380 @@ +#include "AP_GPS.h" + +#if defined(GPS_BLENDED_INSTANCE) + +// defines used to specify the mask position for use of different accuracy metrics in the blending algorithm +#define BLEND_MASK_USE_HPOS_ACC 1 +#define BLEND_MASK_USE_VPOS_ACC 2 +#define BLEND_MASK_USE_SPD_ACC 4 + +// pre-arm check of GPS blending. True means healthy or that blending is not being used +bool AP_GPS::blend_health_check() const +{ + return (_blend_health_counter < 50); +} + +/* + calculate the weightings used to blend GPSs location and velocity data +*/ +bool AP_GPS::calc_blend_weights(void) +{ + // zero the blend weights + memset(&_blend_weights, 0, sizeof(_blend_weights)); + + + static_assert(GPS_MAX_RECEIVERS == 2, "GPS blending only currently works with 2 receivers"); + // Note that the early quit below relies upon exactly 2 instances + // The time delta calculations below also rely upon every instance being currently detected and being parsed + + // exit immediately if not enough receivers to do blending + if (state[0].status <= NO_FIX || state[1].status <= NO_FIX) { + return false; + } + + // Use the oldest non-zero time, but if time difference is excessive, use newest to prevent a disconnected receiver from blocking updates + uint32_t max_ms = 0; // newest non-zero system time of arrival of a GPS message + uint32_t min_ms = -1; // oldest non-zero system time of arrival of a GPS message + uint32_t max_rate_ms = 0; // largest update interval of a GPS receiver + for (uint8_t i=0; i max_ms) { + max_ms = state[i].last_gps_time_ms; + } + if ((state[i].last_gps_time_ms < min_ms) && (state[i].last_gps_time_ms > 0)) { + min_ms = state[i].last_gps_time_ms; + } + max_rate_ms = MAX(get_rate_ms(i), max_rate_ms); + if (isinf(state[i].speed_accuracy) || + isinf(state[i].horizontal_accuracy) || + isinf(state[i].vertical_accuracy)) { + return false; + } + } + if ((max_ms - min_ms) < (2 * max_rate_ms)) { + // data is not too delayed so use the oldest time_stamp to give a chance for data from that receiver to be updated + state[GPS_BLENDED_INSTANCE].last_gps_time_ms = min_ms; + } else { + // receiver data has timed out so fail out of blending + return false; + } + + // calculate the sum squared speed accuracy across all GPS sensors + float speed_accuracy_sum_sq = 0.0f; + if (_blend_mask & BLEND_MASK_USE_SPD_ACC) { + for (uint8_t i=0; i= GPS_OK_FIX_3D) { + if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f) { + speed_accuracy_sum_sq += sq(state[i].speed_accuracy); + } else { + // not all receivers support this metric so set it to zero and don't use it + speed_accuracy_sum_sq = 0.0f; + break; + } + } + } + } + + // calculate the sum squared horizontal position accuracy across all GPS sensors + float horizontal_accuracy_sum_sq = 0.0f; + if (_blend_mask & BLEND_MASK_USE_HPOS_ACC) { + for (uint8_t i=0; i= GPS_OK_FIX_2D) { + if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f) { + horizontal_accuracy_sum_sq += sq(state[i].horizontal_accuracy); + } else { + // not all receivers support this metric so set it to zero and don't use it + horizontal_accuracy_sum_sq = 0.0f; + break; + } + } + } + } + + // calculate the sum squared vertical position accuracy across all GPS sensors + float vertical_accuracy_sum_sq = 0.0f; + if (_blend_mask & BLEND_MASK_USE_VPOS_ACC) { + for (uint8_t i=0; i= GPS_OK_FIX_3D) { + if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f) { + vertical_accuracy_sum_sq += sq(state[i].vertical_accuracy); + } else { + // not all receivers support this metric so set it to zero and don't use it + vertical_accuracy_sum_sq = 0.0f; + break; + } + } + } + } + // Check if we can do blending using reported accuracy + bool can_do_blending = (horizontal_accuracy_sum_sq > 0.0f || vertical_accuracy_sum_sq > 0.0f || speed_accuracy_sum_sq > 0.0f); + + // if we can't do blending using reported accuracy, return false and hard switch logic will be used instead + if (!can_do_blending) { + return false; + } + + float sum_of_all_weights = 0.0f; + + // calculate a weighting using the reported horizontal position + float hpos_blend_weights[GPS_MAX_RECEIVERS] = {}; + if (horizontal_accuracy_sum_sq > 0.0f) { + // calculate the weights using the inverse of the variances + float sum_of_hpos_weights = 0.0f; + for (uint8_t i=0; i= GPS_OK_FIX_2D && state[i].horizontal_accuracy >= 0.001f) { + hpos_blend_weights[i] = horizontal_accuracy_sum_sq / sq(state[i].horizontal_accuracy); + sum_of_hpos_weights += hpos_blend_weights[i]; + } + } + // normalise the weights + if (sum_of_hpos_weights > 0.0f) { + for (uint8_t i=0; i 0.0f) { + // calculate the weights using the inverse of the variances + float sum_of_vpos_weights = 0.0f; + for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].vertical_accuracy >= 0.001f) { + vpos_blend_weights[i] = vertical_accuracy_sum_sq / sq(state[i].vertical_accuracy); + sum_of_vpos_weights += vpos_blend_weights[i]; + } + } + // normalise the weights + if (sum_of_vpos_weights > 0.0f) { + for (uint8_t i=0; i 0.0f) { + // calculate the weights using the inverse of the variances + float sum_of_spd_weights = 0.0f; + for (uint8_t i=0; i= GPS_OK_FIX_3D && state[i].speed_accuracy >= 0.001f) { + spd_blend_weights[i] = speed_accuracy_sum_sq / sq(state[i].speed_accuracy); + sum_of_spd_weights += spd_blend_weights[i]; + } + } + // normalise the weights + if (sum_of_spd_weights > 0.0f) { + for (uint8_t i=0; i state[GPS_BLENDED_INSTANCE].status) { + state[GPS_BLENDED_INSTANCE].status = state[i].status; + } + + // calculate a blended average velocity + state[GPS_BLENDED_INSTANCE].velocity += state[i].velocity * _blend_weights[i]; + + // report the best valid accuracies and DOP metrics + + if (state[i].have_horizontal_accuracy && state[i].horizontal_accuracy > 0.0f && state[i].horizontal_accuracy < state[GPS_BLENDED_INSTANCE].horizontal_accuracy) { + state[GPS_BLENDED_INSTANCE].have_horizontal_accuracy = true; + state[GPS_BLENDED_INSTANCE].horizontal_accuracy = state[i].horizontal_accuracy; + } + + if (state[i].have_vertical_accuracy && state[i].vertical_accuracy > 0.0f && state[i].vertical_accuracy < state[GPS_BLENDED_INSTANCE].vertical_accuracy) { + state[GPS_BLENDED_INSTANCE].have_vertical_accuracy = true; + state[GPS_BLENDED_INSTANCE].vertical_accuracy = state[i].vertical_accuracy; + } + + if (state[i].have_vertical_velocity) { + state[GPS_BLENDED_INSTANCE].have_vertical_velocity = true; + } + + if (state[i].have_speed_accuracy && state[i].speed_accuracy > 0.0f && state[i].speed_accuracy < state[GPS_BLENDED_INSTANCE].speed_accuracy) { + state[GPS_BLENDED_INSTANCE].have_speed_accuracy = true; + state[GPS_BLENDED_INSTANCE].speed_accuracy = state[i].speed_accuracy; + } + + if (state[i].hdop > 0 && state[i].hdop < state[GPS_BLENDED_INSTANCE].hdop) { + state[GPS_BLENDED_INSTANCE].hdop = state[i].hdop; + } + + if (state[i].vdop > 0 && state[i].vdop < state[GPS_BLENDED_INSTANCE].vdop) { + state[GPS_BLENDED_INSTANCE].vdop = state[i].vdop; + } + + if (state[i].num_sats > 0 && state[i].num_sats > state[GPS_BLENDED_INSTANCE].num_sats) { + state[GPS_BLENDED_INSTANCE].num_sats = state[i].num_sats; + } + + // report a blended average GPS antenna position + Vector3f temp_antenna_offset = params[i].antenna_offset; + temp_antenna_offset *= _blend_weights[i]; + _blended_antenna_offset += temp_antenna_offset; + + // blend the timing data + if (timing[i].last_fix_time_ms > timing[GPS_BLENDED_INSTANCE].last_fix_time_ms) { + timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = timing[i].last_fix_time_ms; + } + if (timing[i].last_message_time_ms > timing[GPS_BLENDED_INSTANCE].last_message_time_ms) { + timing[GPS_BLENDED_INSTANCE].last_message_time_ms = timing[i].last_message_time_ms; + } + } + + /* + * Calculate an instantaneous weighted/blended average location from the available GPS instances and store in the _output_state. + * This will be statistically the most likely location, but will be not stable enough for direct use by the autopilot. + */ + + // Use the GPS with the highest weighting as the reference position + float best_weight = 0.0f; + uint8_t best_index = 0; + for (uint8_t i=0; i best_weight) { + best_weight = _blend_weights[i]; + best_index = i; + state[GPS_BLENDED_INSTANCE].location = state[i].location; + } + } + + // Calculate the weighted sum of horizontal and vertical position offsets relative to the reference position + Vector2f blended_NE_offset_m; + float blended_alt_offset_cm = 0.0f; + blended_NE_offset_m.zero(); + for (uint8_t i=0; i 0.0f && i != best_index) { + blended_NE_offset_m += state[GPS_BLENDED_INSTANCE].location.get_distance_NE(state[i].location) * _blend_weights[i]; + blended_alt_offset_cm += (float)(state[i].location.alt - state[GPS_BLENDED_INSTANCE].location.alt) * _blend_weights[i]; + } + } + + // Add the sum of weighted offsets to the reference location to obtain the blended location + state[GPS_BLENDED_INSTANCE].location.offset(blended_NE_offset_m.x, blended_NE_offset_m.y); + state[GPS_BLENDED_INSTANCE].location.alt += (int)blended_alt_offset_cm; + + // Calculate ground speed and course from blended velocity vector + state[GPS_BLENDED_INSTANCE].ground_speed = state[GPS_BLENDED_INSTANCE].velocity.xy().length(); + state[GPS_BLENDED_INSTANCE].ground_course = wrap_360(degrees(atan2f(state[GPS_BLENDED_INSTANCE].velocity.y, state[GPS_BLENDED_INSTANCE].velocity.x))); + + // If the GPS week is the same then use a blended time_week_ms + // If week is different, then use time stamp from GPS with largest weighting + // detect inconsistent week data + uint8_t last_week_instance = 0; + bool weeks_consistent = true; + for (uint8_t i=0; i 0) { + // this is our first valid sensor week data + last_week_instance = state[i].time_week; + } else if (last_week_instance != 0 && _blend_weights[i] > 0 && last_week_instance != state[i].time_week) { + // there is valid sensor week data that is inconsistent + weeks_consistent = false; + } + } + // calculate output + if (!weeks_consistent) { + // use data from highest weighted sensor + state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; + state[GPS_BLENDED_INSTANCE].time_week_ms = state[best_index].time_week_ms; + } else { + // use week number from highest weighting GPS (they should all have the same week number) + state[GPS_BLENDED_INSTANCE].time_week = state[best_index].time_week; + // calculate a blended value for the number of ms lapsed in the week + double temp_time_0 = 0.0; + for (uint8_t i=0; i 0.0f) { + temp_time_0 += (double)state[i].time_week_ms * (double)_blend_weights[i]; + } + } + state[GPS_BLENDED_INSTANCE].time_week_ms = (uint32_t)temp_time_0; + } + + // calculate a blended value for the timing data and lag + double temp_time_1 = 0.0; + double temp_time_2 = 0.0; + for (uint8_t i=0; i 0.0f) { + temp_time_1 += (double)timing[i].last_fix_time_ms * (double) _blend_weights[i]; + temp_time_2 += (double)timing[i].last_message_time_ms * (double)_blend_weights[i]; + float gps_lag_sec = 0; + get_lag(i, gps_lag_sec); + _blended_lag_sec += gps_lag_sec * _blend_weights[i]; + } + } + timing[GPS_BLENDED_INSTANCE].last_fix_time_ms = (uint32_t)temp_time_1; + timing[GPS_BLENDED_INSTANCE].last_message_time_ms = (uint32_t)temp_time_2; + +#if HAL_LOGGING_ENABLED + if (timing[GPS_BLENDED_INSTANCE].last_message_time_ms > last_blended_message_time_ms && + should_log()) { + Write_GPS(GPS_BLENDED_INSTANCE); + } +#endif +} +#endif // GPS_BLENDED_INSTANCE