-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclassify.py
48 lines (40 loc) · 1.66 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
import sys
import os
from PIL import Image
import pandas as pd
import numpy as np
# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
image_path = sys.argv[1]
filename = []
predict = []
for file in os.listdir(image_path):
# Read the image_data
image_data = tf.gfile.FastGFile(image_path + '/' + file, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("logs/trained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("logs/trained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
filename.append(file)
predict.append(label_lines[top_k[0]])
print(label_lines[top_k[0]])
df = pd.DataFrame(data=np.array((filename, predict)), index=['Filename', 'Hand Posture'])
df.to_csv('predicted_output3.csv', index=False)
# for node_id in top_k:
# human_string = label_lines[node_id]
# score = predictions[0][node_id]
# print('%s (score = %.5f)' % (human_string, score))
# print("--------------------------------")