-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhomework2-FruitRage.py
317 lines (250 loc) · 8.18 KB
/
homework2-FruitRage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import time
import copy
class Stack():
def __init__(self):
self.stack = []
def isEmpty(self):
if len(self.stack) == 0:
return True
return False
def get(self):
if not self.isEmpty():
first = self.stack.pop(0)
return first
return False
def add(self, value):
self.stack.insert(0, value)
MOVES = None
TIME_UP = False
IS_MOVES_SET = False
TIME_ON_A_MOVE = None
class Board_State():
def __init__(self):
self.value = None
self.score = 0
self.depth = 0
self.matrix = None
self.move = None
self.remove_list = []
def getTempMatrix(fruit_box):
fruit_box = copy.deepcopy(fruit_box)
return fruit_box
def console_check(state):
global TIME_UP
matrix = state.matrix
sTemp = set()
for row in matrix:
sTemp.update(set(row))
sTemp = list(sTemp)
if len(sTemp) == 1 and sTemp[0] == '*':
return True
if state.depth == MAX_DEPTH:
return True
if IS_MOVES_SET and time.time() - start_time > TIME_ON_A_MOVE:
TIME_UP = True
return True
return False
def gravity(fruit_box):
for j in range(sizeN):
mPrime = sizeN - 1
nPrime = sizeN - 1
while nPrime > -1:
if fruit_box[nPrime][j] != '*' and mPrime == nPrime:
nPrime = nPrime- 1
mPrime = mPrime- 1
elif fruit_box[nPrime][j] == '*':
nPrime = nPrime- 1
elif fruit_box[nPrime][j] != '*' and nPrime < mPrime:
fruit_box[mPrime][j] = fruit_box[nPrime][j]
nPrime = nPrime- 1
mPrime = mPrime- 1
if mPrime > nPrime:
while mPrime >= 0:
fruit_box[mPrime][j] = '*'
mPrime = mPrime- 1
return fruit_box
def searchDfs(fruit_box, i, j, new_depth, total_score, flag):
stack = Stack()
stack.add((i, j))
score = 1
value = fruit_box[i][j]
fruit_box[i][j] = '*'
remove_list = []
while not stack.isEmpty():
x, y = stack.get()
xPrime, yPrime = x, y + 1
if yPrime < sizeN and fruit_box[xPrime][yPrime] == value:
stack.add((xPrime, yPrime))
fruit_box[xPrime][yPrime] = '*'
remove_list.append((xPrime, yPrime))
score = score + 1
xPrime, yPrime = x - 1, y
if xPrime >= 0 and fruit_box[xPrime][yPrime] == value:
stack.add((xPrime, yPrime))
fruit_box[xPrime][yPrime] = '*'
remove_list.append((xPrime, yPrime))
score = score + 1
xPrime, yPrime = x + 1, y
if xPrime < sizeN and fruit_box[xPrime][yPrime] == value:
stack.add((xPrime, yPrime))
fruit_box[xPrime][yPrime] = '*'
remove_list.append((xPrime, yPrime))
score = score + 1
xPrime, yPrime = x, y - 1
if yPrime >= 0 and fruit_box[xPrime][yPrime] == value:
stack.add((xPrime, yPrime))
fruit_box[xPrime][yPrime] = '*'
remove_list.append((xPrime, yPrime))
score = score + 1
state = Board_State()
state.value = score ** 2
state.score = total_score + flag * (score ** 2)
state.move = (i, j)
state.matrix = gravity(fruit_box)
state.depth = new_depth
state.remove_list = remove_list
return state
def actions(state, flag):
global count
global MOVES
global IS_MOVES_SET
global TIME_ON_A_MOVE
matrix = state.matrix
list_of_possible_actions = []
list_of_exhausted_positions = []
for j in range(sizeN):
for i in range(sizeN - 1, -1, -1):
if matrix[i][j] == '*':
break
if ((i, j) not in list_of_exhausted_positions):
new_matrix = getTempMatrix(matrix)
new_state = searchDfs(new_matrix, i, j, state.depth + 1, state.score, flag)
list_of_possible_actions.append(new_state)
list_of_exhausted_positions = list_of_exhausted_positions + new_state.remove_list
list_of_possible_actions = sorted(list_of_possible_actions, key=lambda temp_x: temp_x.value, reverse=True)
if not IS_MOVES_SET:
MOVES = len(list_of_possible_actions)
IS_MOVES_SET = True
if MOVES > 4:
TIME_ON_A_MOVE = (2.0 * float(TIME) * 0.8) / float(MOVES)
else:
TIME_ON_A_MOVE = (2.0 * float(TIME) * 0.9) / float(MOVES)
#time.sleep(.010)
#print TIME_ON_A_MOVE #can comment this and save terminal output space
set_max_depth(init=0)
return list_of_possible_actions
def alphaBetaSearch(state):
state, move = maxValFunc(state, -99999999, 999999999)
state.move = move
return state
def value_setter(state, function_type):
if TIME_UP:
if function_type == "max":
state.value = float(-999999999)
else:
state.value = float(999999999)
else:
score = state.score
state.value = float(score)
return state
def minValFunc(state, alpha, beta):
if console_check(state):
set_value = value_setter(state, "min")
return set_value, set_value.move
v = 99999999
move = None
for a_state in actions(state, -1):
maxValuePrime, garbage_no_use = maxValFunc(a_state, alpha, beta)
if v > maxValuePrime.value:
move = maxValuePrime.move
v = maxValuePrime.value
state.value = maxValuePrime.value
state.matrix = maxValuePrime.matrix
state.score = maxValuePrime.score
if v <= alpha:
return state, move
beta = min(beta, v)
return state, move
def maxValFunc(state, alpha, beta):
if console_check(state):
value_set = value_setter(state, "max")
return value_set, value_set.move
v = -99999999
move = None
for a_state in actions(state, 1):
minValuePrime, garbage_no_use = minValFunc(a_state, alpha, beta)
if v < minValuePrime.value:
move = minValuePrime.move
v = minValuePrime.value
state.value = minValuePrime.value
state.matrix = minValuePrime.matrix
state.score = minValuePrime.score
if v >= beta:
return state, move
alpha = max(alpha, v)
return state, move
def set_max_depth(init=1):
global MAX_DEPTH
global sizeN
if init == 1:
if sizeN < 8:
MAX_DEPTH = 5
elif sizeN > 7 and sizeN < 14:
MAX_DEPTH = 4
else:
MAX_DEPTH = 3
if init == 0 and sizeN > 13:
if IS_MOVES_SET and MOVES > 41:
MAX_DEPTH = 3
elif MOVES <= 41 and MOVES > 20:
MAX_DEPTH = 4
else:
MAX_DEPTH = 5
def main():
global sizeN
global start_time
global MOVES
global IS_MOVES_SET
global TIME_ON_A_MOVE
global TIME_UP
global TIME
global count
MOVES = None
IS_MOVES_SET = False
TIME_ON_A_MOVE = None
TIME_UP = False
start_time = time.time()
with open("input.txt", "r") as f:
inp = f.read().strip().split("\n")
TIME = float(inp[2])
sizeN = int(inp[0])
P = int(inp[1])
set_max_depth(init=1)
matrix = []
m = inp[3:]
i = 0
j = 0
for i in range(sizeN):
temp_list = []
for j in range(sizeN):
temp_list.append(m[i][j])
matrix.append(temp_list)
init_matrix = copy.deepcopy(matrix)
state = Board_State()
state.value = 0
state.score = 0
state.matrix = matrix
state.depth = 0
state.move = None
alphaBetaSearchTemp = alphaBetaSearch(state)
temp = searchDfs(init_matrix, alphaBetaSearchTemp.move[0], alphaBetaSearchTemp.move[1], 0, 0, 0)
alphaBetaSearchTemp.matrix = temp.matrix
alphaBetaSearchTemp.score = temp.value
fp = open("output.txt", "w")
fp.write(chr(alphaBetaSearchTemp.move[1] + 65) + str(alphaBetaSearchTemp.move[0] + 1) + "\n")
matrix = alphaBetaSearchTemp.matrix
for i in range(sizeN):
fp.write("".join(matrix[i]) + "\n")
fp.close()
if __name__ == "__main__":
main()