forked from mitenjain/R3N
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nn.py
executable file
·176 lines (154 loc) · 7.71 KB
/
run_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
"""Run a Neural Network on collected alignment data
"""
import sys
import cPickle
from lib.neural_network import classify_with_network3, classify_with_network2
from argparse import ArgumentParser
from multiprocessing import Process, current_process, Manager
def parse_args():
parser = ArgumentParser(description=__doc__)
# query files
parser.add_argument('--group_1', '-1', action='store',
dest='group_1', required=True, type=str, default=None,
help="group 1 files")
parser.add_argument('--group_2', '-2', action='store',
dest='group_2', required=True, type=str, default=None,
help="group 2 files")
parser.add_argument('--group_3', '-3', action='store',
dest='group_3', required=False, type=str, default=None,
help="group_3 files")
parser.add_argument('--config_file', '-c', action='store', type=str, dest='config',
required=True, help='config file (pickle)')
parser.add_argument('--model_dir', action='store', type=str, dest='model_file', required=False,
default=None, help="directory with models")
parser.add_argument('--strand', '-st', action='store', dest='strand', required=True,
type=str, help="which strand to use, options = {t, c, both}")
parser.add_argument('-nb_files', '-nb', action='store', dest='nb_files', required=False,
default=50, type=int, help="maximum number of reads to use")
parser.add_argument('--jobs', '-j', action='store', dest='jobs', required=False,
default=4, type=int, help="number of jobs to run concurrently")
parser.add_argument('--iter', '-i', action='store', dest='iter', required=False,
default=1, type=int, help="number of iterations to do")
parser.add_argument('--learning_algorithm', '-a', dest='learning_algo', required=False,
default=None, action='store', type=str, help="options: \"annealing\"")
parser.add_argument('--epochs', '-ep', action='store', dest='epochs', required=False,
default=10000, type=int, help="number of iterations to do")
parser.add_argument('--batch_size', '-b', action='store', dest='batch_size', required=False, type=int,
default=None, help='specify batch size')
parser.add_argument('--learning_rate', '-e', action='store', dest='learning_rate',
required=False, default=0.01, type=float)
parser.add_argument('--L1_reg', '-L1', action='store', dest='L1', required=False,
default=0.0, type=float)
parser.add_argument('--L2_reg', '-L2', action='store', dest='L2', required=False,
default=0.001, type=float)
parser.add_argument('--train_test', '-s', action='store', dest='split', required=False,
default=0.9, type=float, help="train/test split")
parser.add_argument('--preprocess', '-p', action='store', required=False, default=None,
dest='preprocess', help="options:\nnormalize\ncenter\ndefault:None")
parser.add_argument("--feature_set", '-f', action='store', dest='features', required=False,
type=str, default=None, help="pick features: all, mean, noise, default: mean with"
" posteriors")
parser.add_argument('--events', '-ev', action='store', required=True, dest='events', type=int,
help='number of events per alignment column to use')
parser.add_argument('--output_location', '-o', action='store', dest='out',
required=True, type=str, default=None,
help="directory to put results")
args = parser.parse_args()
return args
def run_nn3(work_queue, done_queue):
try:
for f in iter(work_queue.get, 'STOP'):
n = classify_with_network3(**f)
except Exception:
done_queue.put("%s failed" % current_process().name)
def run_nn2(work_queue, done_queue):
try:
for f in iter(work_queue.get, 'STOP'):
n = classify_with_network2(**f)
except Exception:
done_queue.put("%s failed" % current_process().name)
def main(args):
args = parse_args()
assert(args.features in [None, "dmean", "noise", "all", "mean"]), "invalid feature subset selection"
config = cPickle.load(open(args.config, 'r'))
try:
extra_args = config['extra_args']
batch_size = extra_args['batch_size']
except KeyError:
extra_args = None
batch_size = args.batch_size
assert(batch_size is not None), "You need to specify batch_size with a flag or have it in the config file"
start_message = """
# Starting Neural Net analysis for {title}
# Command line: {cmd}
# Config file: {config}
# Importing models from {models}
# Looking at {nbFiles} files.
# Using events from strand {strand}
# Network type: {type}
# Network dims: {dims}
# Learning algorithm: {algo}
# Collecting {nb_events} events per reference position.
# Batch size: {batch}
# Non-default feature set: {feature_set}
# Iterations: {iter}.
# Epochs: {epochs}
# Data pre-processing: {center}
# Train/test split: {train_test}
# L1 reg: {L1}
# L2 reg: {L2}
# Output to: {out}""".format(nbFiles=args.nb_files, strand=args.strand, iter=args.iter,
train_test=args.split, out=args.out, epochs=args.epochs, center=args.preprocess,
L1=args.L1, L2=args.L2, type=config['model_type'], dims=config['hidden_dim'],
nb_events=args.events,cmd=" ".join(sys.argv[:]), title=config['experiment_name'],
batch=batch_size, algo=args.learning_algo, models=args.model_file,
feature_set=args.features, config=args.config)
print >> sys.stdout, start_message
workers = args.jobs
work_queue = Manager().Queue()
done_queue = Manager().Queue()
jobs = []
for experiment in config['sites']:
nn_args = {
"group_1": args.group_1,
"group_2": args.group_2,
"group_3": args.group_3,
"strand": args.strand,
"motif_start_positions": experiment['motif_start_position'],
"preprocess": args.preprocess,
"events_per_pos": args.events,
"feature_set": args.features,
"title": experiment['title'],
"learning_algorithm": args.learning_algo,
"train_test_split": args.split,
"iterations": args.iter,
"epochs": args.epochs,
"max_samples": args.nb_files,
"batch_size": batch_size,
"learning_rate": args.learning_rate,
"L1_reg": args.L1,
"L2_reg": args.L2,
"hidden_dim": config['hidden_dim'],
"model_type": config['model_type'],
"model_dir": args.model_file,
"extra_args": extra_args,
"out_path": args.out,
}
#classify_with_network3(**nn_args) # activate for debugging
work_queue.put(nn_args)
for w in xrange(workers):
if args.group_3 is None:
p = Process(target=run_nn2, args=(work_queue, done_queue))
else:
p = Process(target=run_nn3, args=(work_queue, done_queue))
p.start()
jobs.append(p)
work_queue.put('STOP')
for p in jobs:
p.join()
done_queue.put('STOP')
print >> sys.stderr, "\n\tFinished Neural Net"
print >> sys.stdout, "\n\tFinished Neural Net"
if __name__ == "__main__":
sys.exit(main(sys.argv))