-
Notifications
You must be signed in to change notification settings - Fork 666
/
input_pipe.py
309 lines (264 loc) · 14.2 KB
/
input_pipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import tensorflow as tf
from feeder import VarFeeder
from enum import Enum
from typing import List, Iterable
import numpy as np
import pandas as pd
class ModelMode(Enum):
TRAIN = 0
EVAL = 1,
PREDICT = 2
class Split:
def __init__(self, test_set: List[tf.Tensor], train_set: List[tf.Tensor], test_size: int, train_size: int):
self.test_set = test_set
self.train_set = train_set
self.test_size = test_size
self.train_size = train_size
class Splitter:
def cluster_pages(self, cluster_idx: tf.Tensor):
"""
Shuffles pages so all user_agents of each unique pages stays together in a shuffled list
:param cluster_idx: Tensor[uniq_pages, n_agents], each value is index of pair (uniq_page, agent) in other page tensors
:return: list of page indexes for use in a global page tensors
"""
size = cluster_idx.shape[0].value
random_idx = tf.random_shuffle(tf.range(0, size, dtype=tf.int32), self.seed)
shuffled_pages = tf.gather(cluster_idx, random_idx)
# Drop non-existent (uniq_page, agent) pairs. Non-existent pair has index value = -1
mask = shuffled_pages >= 0
page_idx = tf.boolean_mask(shuffled_pages, mask)
return page_idx
def __init__(self, tensors: List[tf.Tensor], cluster_indexes: tf.Tensor, n_splits, seed, train_sampling=1.0,
test_sampling=1.0):
size = tensors[0].shape[0].value
self.seed = seed
clustered_index = self.cluster_pages(cluster_indexes)
index_len = tf.shape(clustered_index)[0]
assert_op = tf.assert_equal(index_len, size, message='n_pages is not equals to size of clustered index')
with tf.control_dependencies([assert_op]):
split_nitems = int(round(size / n_splits))
split_size = [split_nitems] * n_splits
split_size[-1] = size - (n_splits - 1) * split_nitems
splits = tf.split(clustered_index, split_size)
complements = [tf.random_shuffle(tf.concat(splits[:i] + splits[i + 1:], axis=0), seed) for i in
range(n_splits)]
splits = [tf.random_shuffle(split, seed) for split in splits]
def mk_name(prefix, tensor):
return prefix + '_' + tensor.name[:-2]
def prepare_split(i):
test_size = split_size[i]
train_size = size - test_size
test_sampled_size = int(round(test_size * test_sampling))
train_sampled_size = int(round(train_size * train_sampling))
test_idx = splits[i][:test_sampled_size]
train_idx = complements[i][:train_sampled_size]
test_set = [tf.gather(tensor, test_idx, name=mk_name('test', tensor)) for tensor in tensors]
tran_set = [tf.gather(tensor, train_idx, name=mk_name('train', tensor)) for tensor in tensors]
return Split(test_set, tran_set, test_sampled_size, train_sampled_size)
self.splits = [prepare_split(i) for i in range(n_splits)]
class FakeSplitter:
def __init__(self, tensors: List[tf.Tensor], n_splits, seed, test_sampling=1.0):
total_pages = tensors[0].shape[0].value
n_pages = int(round(total_pages * test_sampling))
def mk_name(prefix, tensor):
return prefix + '_' + tensor.name[:-2]
def prepare_split(i):
idx = tf.random_shuffle(tf.range(0, n_pages, dtype=tf.int32), seed + i)
train_tensors = [tf.gather(tensor, idx, name=mk_name('shfl', tensor)) for tensor in tensors]
if test_sampling < 1.0:
sampled_idx = idx[:n_pages]
test_tensors = [tf.gather(tensor, sampled_idx, name=mk_name('shfl_test', tensor)) for tensor in tensors]
else:
test_tensors = train_tensors
return Split(test_tensors, train_tensors, n_pages, total_pages)
self.splits = [prepare_split(i) for i in range(n_splits)]
class InputPipe:
def cut(self, hits, start, end):
"""
Cuts [start:end] diapason from input data
:param hits: hits timeseries
:param start: start index
:param end: end index
:return: tuple (train_hits, test_hits, dow, lagged_hits)
"""
# Pad hits to ensure we have enough array length for prediction
hits = tf.concat([hits, tf.fill([self.predict_window], np.NaN)], axis=0)
cropped_hit = hits[start:end]
# cut day of week
cropped_dow = self.inp.dow[start:end]
# Cut lagged hits
# gather() accepts only int32 indexes
cropped_lags = tf.cast(self.inp.lagged_ix[start:end], tf.int32)
# Mask for -1 (no data) lag indexes
lag_mask = cropped_lags < 0
# Convert -1 to 0 for gather(), it don't accept anything exotic
cropped_lags = tf.maximum(cropped_lags, 0)
# Translate lag indexes to hit values
lagged_hit = tf.gather(hits, cropped_lags)
# Convert masked (see above) or NaN lagged hits to zeros
lag_zeros = tf.zeros_like(lagged_hit)
lagged_hit = tf.where(lag_mask | tf.is_nan(lagged_hit), lag_zeros, lagged_hit)
# Split for train and test
x_hits, y_hits = tf.split(cropped_hit, [self.train_window, self.predict_window], axis=0)
# Convert NaN to zero in for train data
x_hits = tf.where(tf.is_nan(x_hits), tf.zeros_like(x_hits), x_hits)
return x_hits, y_hits, cropped_dow, lagged_hit
def cut_train(self, hits, *args):
"""
Cuts a segment of time series for training. Randomly chooses starting point.
:param hits: hits timeseries
:param args: pass-through data, will be appended to result
:return: result of cut() + args
"""
n_days = self.predict_window + self.train_window
# How much free space we have to choose starting day
free_space = self.inp.data_days - n_days - self.back_offset - self.start_offset
if self.verbose:
lower_train_start = self.inp.data_start + pd.Timedelta(self.start_offset, 'D')
lower_test_end = lower_train_start + pd.Timedelta(n_days, 'D')
lower_test_start = lower_test_end - pd.Timedelta(self.predict_window, 'D')
upper_train_start = self.inp.data_start + pd.Timedelta(free_space - 1, 'D')
upper_test_end = upper_train_start + pd.Timedelta(n_days, 'D')
upper_test_start = upper_test_end - pd.Timedelta(self.predict_window, 'D')
print(f"Free space for training: {free_space} days.")
print(f" Lower train {lower_train_start}, prediction {lower_test_start}..{lower_test_end}")
print(f" Upper train {upper_train_start}, prediction {upper_test_start}..{upper_test_end}")
# Random starting point
offset = tf.random_uniform((), self.start_offset, free_space, dtype=tf.int32, seed=self.rand_seed)
end = offset + n_days
# Cut all the things
return self.cut(hits, offset, end) + args
def cut_eval(self, hits, *args):
"""
Cuts segment of time series for evaluation.
Always cuts train_window + predict_window length segment beginning at start_offset point
:param hits: hits timeseries
:param args: pass-through data, will be appended to result
:return: result of cut() + args
"""
end = self.start_offset + self.train_window + self.predict_window
return self.cut(hits, self.start_offset, end) + args
def reject_filter(self, x_hits, y_hits, *args):
"""
Rejects timeseries having too many zero datapoints (more than self.max_train_empty)
"""
if self.verbose:
print("max empty %d train %d predict" % (self.max_train_empty, self.max_predict_empty))
zeros_x = tf.reduce_sum(tf.to_int32(tf.equal(x_hits, 0.0)))
keep = zeros_x <= self.max_train_empty
return keep
def make_features(self, x_hits, y_hits, dow, lagged_hits, pf_agent, pf_country, pf_site, page_ix,
page_popularity, year_autocorr, quarter_autocorr):
"""
Main method. Assembles input data into final tensors
"""
# Split day of week to train and test
x_dow, y_dow = tf.split(dow, [self.train_window, self.predict_window], axis=0)
# Normalize hits
mean = tf.reduce_mean(x_hits)
std = tf.sqrt(tf.reduce_mean(tf.squared_difference(x_hits, mean)))
norm_x_hits = (x_hits - mean) / std
norm_y_hits = (y_hits - mean) / std
norm_lagged_hits = (lagged_hits - mean) / std
# Split lagged hits to train and test
x_lagged, y_lagged = tf.split(norm_lagged_hits, [self.train_window, self.predict_window], axis=0)
# Combine all page features into single tensor
stacked_features = tf.stack([page_popularity, quarter_autocorr, year_autocorr])
flat_page_features = tf.concat([pf_agent, pf_country, pf_site, stacked_features], axis=0)
page_features = tf.expand_dims(flat_page_features, 0)
# Train features
x_features = tf.concat([
# [n_days] -> [n_days, 1]
tf.expand_dims(norm_x_hits, -1),
x_dow,
x_lagged,
# Stretch page_features to all training days
# [1, features] -> [n_days, features]
tf.tile(page_features, [self.train_window, 1])
], axis=1)
# Test features
y_features = tf.concat([
# [n_days] -> [n_days, 1]
y_dow,
y_lagged,
# Stretch page_features to all testing days
# [1, features] -> [n_days, features]
tf.tile(page_features, [self.predict_window, 1])
], axis=1)
return x_hits, x_features, norm_x_hits, x_lagged, y_hits, y_features, norm_y_hits, mean, std, flat_page_features, page_ix
def __init__(self, inp: VarFeeder, features: Iterable[tf.Tensor], n_pages: int, mode: ModelMode, n_epoch=None,
batch_size=127, runs_in_burst=1, verbose=True, predict_window=60, train_window=500,
train_completeness_threshold=1, predict_completeness_threshold=1, back_offset=0,
train_skip_first=0, rand_seed=None):
"""
Create data preprocessing pipeline
:param inp: Raw input data
:param features: Features tensors (subset of data in inp)
:param n_pages: Total number of pages
:param mode: Train/Predict/Eval mode selector
:param n_epoch: Number of epochs. Generates endless data stream if None
:param batch_size:
:param runs_in_burst: How many batches can be consumed at short time interval (burst). Multiplicator for prefetch()
:param verbose: Print additional information during graph construction
:param predict_window: Number of days to predict
:param train_window: Use train_window days for traning
:param train_completeness_threshold: Percent of zero datapoints allowed in train timeseries.
:param predict_completeness_threshold: Percent of zero datapoints allowed in test/predict timeseries.
:param back_offset: Don't use back_offset days at the end of timeseries
:param train_skip_first: Don't use train_skip_first days at the beginning of timeseries
:param rand_seed:
"""
self.n_pages = n_pages
self.inp = inp
self.batch_size = batch_size
self.rand_seed = rand_seed
self.back_offset = back_offset
if verbose:
print("Mode:%s, data days:%d, Data start:%s, data end:%s, features end:%s " % (
mode, inp.data_days, inp.data_start, inp.data_end, inp.features_end))
if mode == ModelMode.TRAIN:
# reserve predict_window at the end for validation
assert inp.data_days - predict_window > predict_window + train_window, \
"Predict+train window length (+predict window for validation) is larger than total number of days in dataset"
self.start_offset = train_skip_first
elif mode == ModelMode.EVAL or mode == ModelMode.PREDICT:
self.start_offset = inp.data_days - train_window - back_offset
if verbose:
train_start = inp.data_start + pd.Timedelta(self.start_offset, 'D')
eval_start = train_start + pd.Timedelta(train_window, 'D')
end = eval_start + pd.Timedelta(predict_window - 1, 'D')
print("Train start %s, predict start %s, end %s" % (train_start, eval_start, end))
assert self.start_offset >= 0
self.train_window = train_window
self.predict_window = predict_window
self.attn_window = train_window - predict_window + 1
self.max_train_empty = int(round(train_window * (1 - train_completeness_threshold)))
self.max_predict_empty = int(round(predict_window * (1 - predict_completeness_threshold)))
self.mode = mode
self.verbose = verbose
# Reserve more processing threads for eval/predict because of larger batches
num_threads = 3 if mode == ModelMode.TRAIN else 6
# Choose right cutter function for current ModelMode
cutter = {ModelMode.TRAIN: self.cut_train, ModelMode.EVAL: self.cut_eval, ModelMode.PREDICT: self.cut_eval}
# Create dataset, transform features and assemble batches
root_ds = tf.data.Dataset.from_tensor_slices(tuple(features)).repeat(n_epoch)
batch = (root_ds
.map(cutter[mode])
.filter(self.reject_filter)
.map(self.make_features, num_parallel_calls=num_threads)
.batch(batch_size)
.prefetch(runs_in_burst * 2)
)
self.iterator = batch.make_initializable_iterator()
it_tensors = self.iterator.get_next()
# Assign all tensors to class variables
self.true_x, self.time_x, self.norm_x, self.lagged_x, self.true_y, self.time_y, self.norm_y, self.norm_mean, \
self.norm_std, self.page_features, self.page_ix = it_tensors
self.encoder_features_depth = self.time_x.shape[2].value
def load_vars(self, session):
self.inp.restore(session)
def init_iterator(self, session):
session.run(self.iterator.initializer)
def page_features(inp: VarFeeder):
return (inp.hits, inp.pf_agent, inp.pf_country, inp.pf_site,
inp.page_ix, inp.page_popularity, inp.year_autocorr, inp.quarter_autocorr)