-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_summary_temporal.txt
1446 lines (1433 loc) · 83.9 KB
/
model_summary_temporal.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Print Model:
---------------------------------------------
Gamma(
(encoder): ConvolutionalVisionTransformer(
(stage0): VisionTransformer(
(patch_embed): ConvEmbed(
(proj): Conv2d(15, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
(norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): ModuleList(
(0): Block(
(norm1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=64, bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=64, bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=64, bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=64, out_features=64, bias=True)
(proj_k): Linear(in_features=64, out_features=64, bias=True)
(proj_v): Linear(in_features=64, out_features=64, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=64, out_features=64, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=64, out_features=256, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=256, out_features=64, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
)
(stage1): VisionTransformer(
(patch_embed): ConvEmbed(
(proj): Conv2d(64, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(norm): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): ModuleList(
(0): Block(
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=192, out_features=192, bias=True)
(proj_k): Linear(in_features=192, out_features=192, bias=True)
(proj_v): Linear(in_features=192, out_features=192, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): Block(
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=192, out_features=192, bias=True)
(proj_k): Linear(in_features=192, out_features=192, bias=True)
(proj_v): Linear(in_features=192, out_features=192, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(2): Block(
(norm1): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)
(bn): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=192, out_features=192, bias=True)
(proj_k): Linear(in_features=192, out_features=192, bias=True)
(proj_v): Linear(in_features=192, out_features=192, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=192, out_features=768, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=768, out_features=192, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
)
(stage2): VisionTransformer(
(patch_embed): ConvEmbed(
(proj): Conv2d(192, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
)
(pos_drop): Dropout(p=0.0, inplace=False)
(blocks): ModuleList(
(0): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(1): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.008)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(2): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.015)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(3): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.023)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(4): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.031)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(5): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.038)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(6): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.046)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(7): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.054)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(8): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.062)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(9): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.069)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(10): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.077)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(11): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.085)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(12): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.092)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
(13): Block(
(norm1): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(attn): Attention(
(conv_proj_q): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_k): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(conv_proj_v): Sequential(
(conv): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=384, bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(rearrage): Rearrange('b c h w -> b (h w) c')
)
(proj_q): Linear(in_features=384, out_features=384, bias=True)
(proj_k): Linear(in_features=384, out_features=384, bias=True)
(proj_v): Linear(in_features=384, out_features=384, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=384, out_features=384, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(drop_path): DropPath(drop_prob=0.100)
(norm2): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=384, out_features=1536, bias=True)
(act): QuickGELU()
(fc2): Linear(in_features=1536, out_features=384, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
)
(expander): Conv2d(384, 1024, kernel_size=[2, 2], stride=[2, 2], padding=[1, 1])
(expander_norm): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(expander_act): LeakyReLU(negative_slope=0.01)
)
(state_model): ConvLSTM(
(Gates): Conv2d(2048, 4096, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(decoder): DecoderCVT(
(contractor): Conv2d(1024, 384, kernel_size=[2, 2], stride=[1, 1], padding=[1, 1])
(bn_contractor): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(leaky_relu): LeakyReLU(negative_slope=0.01)
(up2): UpSampleBN(
(_net): Sequential(
(0): Conv2d(768, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Conv2d(384, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): LeakyReLU(negative_slope=0.01)
)
)
(up1): UpSampleBN(
(_net): Sequential(
(0): Conv2d(384, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): LeakyReLU(negative_slope=0.01)
)
)
(up0): UpSampleBN(
(_net): Sequential(
(0): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.01)
(3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): LeakyReLU(negative_slope=0.01)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): LeakyReLU(negative_slope=0.01)
)
)
(up_x): Upsample(scale_factor=2.0, mode=bilinear)
(conv): Conv2d(64, 108, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(relu): ReLU(inplace=True)
)
(adaptive_bins_layer): mViT(
(patch_transformer): PatchTransformerEncoder(
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=1024, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
(1): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=1024, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
(2): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=1024, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
(3): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): _LinearWithBias(in_features=128, out_features=128, bias=True)
)
(linear1): Linear(in_features=128, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features=1024, out_features=128, bias=True)
(norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
)
)
)
(embedding_convPxP): Conv2d(15, 128, kernel_size=(16, 16), stride=(16, 16))
)
(conv3x3): Conv2d(15, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(regressor): Sequential(
(0): Linear(in_features=128, out_features=256, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Linear(in_features=256, out_features=3, bias=True)
)
)
)
Print Train TD Model:
------------------------------------
multilayer()
Print Val TD Model:
---------------------------------------
multilayer()
------------------------------------------------------------------------------------
Model Summary:
--------------------------------------===============================================================================================
Layer (type:depth-idx) Output Shape Param #
===============================================================================================
├─ConvolutionalVisionTransformer: 1-1 [-1, 1024, 17, 13] --
| └─VisionTransformer: 2-1 [-1, 64, 128, 96] --
| | └─ConvEmbed: 3-1 [-1, 64, 128, 96] 47,232
| | └─Dropout: 3-2 [-1, 12288, 64] --
| └─VisionTransformer: 2-2 [-1, 192, 64, 48] --
| | └─ConvEmbed: 3-3 [-1, 192, 64, 48] 111,168
| | └─Dropout: 3-4 [-1, 3072, 192] --
| └─VisionTransformer: 2-3 [-1, 384, 32, 24] --
| | └─ConvEmbed: 3-5 [-1, 384, 32, 24] 664,704
| | └─Dropout: 3-6 [-1, 768, 384] --
| └─Conv2d: 2-4 [-1, 1024, 17, 13] 1,573,888
| └─BatchNorm2d: 2-5 [-1, 1024, 17, 13] 2,048
| └─LeakyReLU: 2-6 [-1, 1024, 17, 13] --
├─ConvLSTM: 1-2 [-1, 1024, 17, 13] --
| └─Conv2d: 2-7 [-1, 4096, 17, 13] 75,501,568
├─DecoderCVT: 1-3 [-1, 108, 256, 192] --
| └─Conv2d: 2-8 [-1, 384, 18, 14] 1,573,248
| └─BatchNorm2d: 2-9 [-1, 384, 18, 14] 768
| └─LeakyReLU: 2-10 [-1, 384, 18, 14] --
| └─UpSampleBN: 2-11 [-1, 192, 32, 24] --
| | └─Sequential: 3-7 [-1, 192, 32, 24] 4,647,744
| └─UpSampleBN: 2-12 [-1, 64, 64, 48] --
| | └─Sequential: 3-8 [-1, 64, 64, 48] 1,107,264
| └─UpSampleBN: 2-13 [-1, 64, 128, 96] --
| | └─Sequential: 3-9 [-1, 64, 128, 96] 148,032
| └─Upsample: 2-14 [-1, 64, 256, 192] --
| └─Conv2d: 2-15 [-1, 108, 256, 192] 172,908
| └─ReLU: 2-16 [-1, 108, 256, 192] --
├─mViT: 1-4 [-1, 3] --
| └─PatchTransformerEncoder: 2-17 [-1, 2, 128] --
| | └─Conv2d: 3-10 [-1, 128, 16, 12] 491,648
| | └─TransformerEncoder: 3-11 [-1, 2, 128] 1,319,424
| └─Conv2d: 2-18 [-1, 128, 256, 192] 17,408
| └─Sequential: 2-19 [-1, 3] --
| | └─Linear: 3-12 [-1, 256] 33,024
| | └─LeakyReLU: 3-13 [-1, 256] --
| | └─Linear: 3-14 [-1, 256] 65,792
| | └─LeakyReLU: 3-15 [-1, 256] --
| | └─Linear: 3-16 [-1, 3] 771
===============================================================================================
Total params: 87,478,639
Trainable params: 87,478,639
Non-trainable params: 0
Total mult-adds (G): 37.25
===============================================================================================
Input size (MB): 2.81
Forward/backward pass size (MB): 194.28
Params size (MB): 333.70
Estimated Total Size (MB): 530.79
===============================================================================================
Train TD Model Summary:
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
└─multilayer: 0-1 [-1, 49, 3, 256, 192] --
==========================================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
Total mult-adds (M): 0.00
==========================================================================================
Input size (MB): 20.25
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 20.25
==========================================================================================
Val TD Model Summary:
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
└─multilayer: 0-1 [-1, 49, 3, 256, 192] --
==========================================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
Total mult-adds (M): 0.00
==========================================================================================
Input size (MB): 20.25
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 20.25
==========================================================================================
------------------------------------------------------------------------------------
Model Layer Names:
--------------------------------------
encoder.stage0.patch_embed.proj.weight: torch.Size([64, 15, 7, 7])
encoder.stage0.patch_embed.proj.bias: torch.Size([64])
encoder.stage0.patch_embed.norm.weight: torch.Size([64])
encoder.stage0.patch_embed.norm.bias: torch.Size([64])
encoder.stage0.blocks.0.norm1.weight: torch.Size([64])
encoder.stage0.blocks.0.norm1.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_q.conv.weight: torch.Size([64, 1, 3, 3])
encoder.stage0.blocks.0.attn.conv_proj_q.bn.weight: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_q.bn.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_k.conv.weight: torch.Size([64, 1, 3, 3])
encoder.stage0.blocks.0.attn.conv_proj_k.bn.weight: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_k.bn.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_v.conv.weight: torch.Size([64, 1, 3, 3])
encoder.stage0.blocks.0.attn.conv_proj_v.bn.weight: torch.Size([64])
encoder.stage0.blocks.0.attn.conv_proj_v.bn.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.proj_q.weight: torch.Size([64, 64])
encoder.stage0.blocks.0.attn.proj_q.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.proj_k.weight: torch.Size([64, 64])
encoder.stage0.blocks.0.attn.proj_k.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.proj_v.weight: torch.Size([64, 64])
encoder.stage0.blocks.0.attn.proj_v.bias: torch.Size([64])
encoder.stage0.blocks.0.attn.proj.weight: torch.Size([64, 64])
encoder.stage0.blocks.0.attn.proj.bias: torch.Size([64])
encoder.stage0.blocks.0.norm2.weight: torch.Size([64])
encoder.stage0.blocks.0.norm2.bias: torch.Size([64])
encoder.stage0.blocks.0.mlp.fc1.weight: torch.Size([256, 64])
encoder.stage0.blocks.0.mlp.fc1.bias: torch.Size([256])
encoder.stage0.blocks.0.mlp.fc2.weight: torch.Size([64, 256])
encoder.stage0.blocks.0.mlp.fc2.bias: torch.Size([64])
encoder.stage1.patch_embed.proj.weight: torch.Size([192, 64, 3, 3])
encoder.stage1.patch_embed.proj.bias: torch.Size([192])
encoder.stage1.patch_embed.norm.weight: torch.Size([192])
encoder.stage1.patch_embed.norm.bias: torch.Size([192])
encoder.stage1.blocks.0.norm1.weight: torch.Size([192])
encoder.stage1.blocks.0.norm1.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_q.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.0.attn.conv_proj_q.bn.weight: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_q.bn.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_k.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.0.attn.conv_proj_k.bn.weight: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_k.bn.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_v.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.0.attn.conv_proj_v.bn.weight: torch.Size([192])
encoder.stage1.blocks.0.attn.conv_proj_v.bn.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.proj_q.weight: torch.Size([192, 192])
encoder.stage1.blocks.0.attn.proj_q.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.proj_k.weight: torch.Size([192, 192])
encoder.stage1.blocks.0.attn.proj_k.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.proj_v.weight: torch.Size([192, 192])
encoder.stage1.blocks.0.attn.proj_v.bias: torch.Size([192])
encoder.stage1.blocks.0.attn.proj.weight: torch.Size([192, 192])
encoder.stage1.blocks.0.attn.proj.bias: torch.Size([192])
encoder.stage1.blocks.0.norm2.weight: torch.Size([192])
encoder.stage1.blocks.0.norm2.bias: torch.Size([192])
encoder.stage1.blocks.0.mlp.fc1.weight: torch.Size([768, 192])
encoder.stage1.blocks.0.mlp.fc1.bias: torch.Size([768])
encoder.stage1.blocks.0.mlp.fc2.weight: torch.Size([192, 768])
encoder.stage1.blocks.0.mlp.fc2.bias: torch.Size([192])
encoder.stage1.blocks.1.norm1.weight: torch.Size([192])
encoder.stage1.blocks.1.norm1.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_q.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.1.attn.conv_proj_q.bn.weight: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_q.bn.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_k.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.1.attn.conv_proj_k.bn.weight: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_k.bn.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_v.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.1.attn.conv_proj_v.bn.weight: torch.Size([192])
encoder.stage1.blocks.1.attn.conv_proj_v.bn.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.proj_q.weight: torch.Size([192, 192])
encoder.stage1.blocks.1.attn.proj_q.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.proj_k.weight: torch.Size([192, 192])
encoder.stage1.blocks.1.attn.proj_k.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.proj_v.weight: torch.Size([192, 192])
encoder.stage1.blocks.1.attn.proj_v.bias: torch.Size([192])
encoder.stage1.blocks.1.attn.proj.weight: torch.Size([192, 192])
encoder.stage1.blocks.1.attn.proj.bias: torch.Size([192])
encoder.stage1.blocks.1.norm2.weight: torch.Size([192])
encoder.stage1.blocks.1.norm2.bias: torch.Size([192])
encoder.stage1.blocks.1.mlp.fc1.weight: torch.Size([768, 192])
encoder.stage1.blocks.1.mlp.fc1.bias: torch.Size([768])
encoder.stage1.blocks.1.mlp.fc2.weight: torch.Size([192, 768])
encoder.stage1.blocks.1.mlp.fc2.bias: torch.Size([192])
encoder.stage1.blocks.2.norm1.weight: torch.Size([192])
encoder.stage1.blocks.2.norm1.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_q.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.2.attn.conv_proj_q.bn.weight: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_q.bn.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_k.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.2.attn.conv_proj_k.bn.weight: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_k.bn.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_v.conv.weight: torch.Size([192, 1, 3, 3])
encoder.stage1.blocks.2.attn.conv_proj_v.bn.weight: torch.Size([192])
encoder.stage1.blocks.2.attn.conv_proj_v.bn.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.proj_q.weight: torch.Size([192, 192])
encoder.stage1.blocks.2.attn.proj_q.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.proj_k.weight: torch.Size([192, 192])
encoder.stage1.blocks.2.attn.proj_k.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.proj_v.weight: torch.Size([192, 192])
encoder.stage1.blocks.2.attn.proj_v.bias: torch.Size([192])
encoder.stage1.blocks.2.attn.proj.weight: torch.Size([192, 192])
encoder.stage1.blocks.2.attn.proj.bias: torch.Size([192])
encoder.stage1.blocks.2.norm2.weight: torch.Size([192])
encoder.stage1.blocks.2.norm2.bias: torch.Size([192])
encoder.stage1.blocks.2.mlp.fc1.weight: torch.Size([768, 192])
encoder.stage1.blocks.2.mlp.fc1.bias: torch.Size([768])
encoder.stage1.blocks.2.mlp.fc2.weight: torch.Size([192, 768])
encoder.stage1.blocks.2.mlp.fc2.bias: torch.Size([192])
encoder.stage2.patch_embed.proj.weight: torch.Size([384, 192, 3, 3])
encoder.stage2.patch_embed.proj.bias: torch.Size([384])
encoder.stage2.patch_embed.norm.weight: torch.Size([384])
encoder.stage2.patch_embed.norm.bias: torch.Size([384])
encoder.stage2.blocks.0.norm1.weight: torch.Size([384])
encoder.stage2.blocks.0.norm1.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_q.conv.weight: torch.Size([384, 1, 3, 3])
encoder.stage2.blocks.0.attn.conv_proj_q.bn.weight: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_q.bn.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_k.conv.weight: torch.Size([384, 1, 3, 3])
encoder.stage2.blocks.0.attn.conv_proj_k.bn.weight: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_k.bn.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_v.conv.weight: torch.Size([384, 1, 3, 3])
encoder.stage2.blocks.0.attn.conv_proj_v.bn.weight: torch.Size([384])
encoder.stage2.blocks.0.attn.conv_proj_v.bn.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.proj_q.weight: torch.Size([384, 384])
encoder.stage2.blocks.0.attn.proj_q.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.proj_k.weight: torch.Size([384, 384])
encoder.stage2.blocks.0.attn.proj_k.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.proj_v.weight: torch.Size([384, 384])
encoder.stage2.blocks.0.attn.proj_v.bias: torch.Size([384])
encoder.stage2.blocks.0.attn.proj.weight: torch.Size([384, 384])
encoder.stage2.blocks.0.attn.proj.bias: torch.Size([384])
encoder.stage2.blocks.0.norm2.weight: torch.Size([384])
encoder.stage2.blocks.0.norm2.bias: torch.Size([384])
encoder.stage2.blocks.0.mlp.fc1.weight: torch.Size([1536, 384])
encoder.stage2.blocks.0.mlp.fc1.bias: torch.Size([1536])