Skip to content

Latest commit

 

History

History
217 lines (162 loc) · 5.96 KB

File metadata and controls

217 lines (162 loc) · 5.96 KB

OnnxStack.StableDiffusion - Onnx Stable Diffusion Library for .NET

OnnxStack.StableDiffusion is a library that provides access to Stable Diffusion processes in .NET. It offers extensive support for features such as TextToImage, ImageToImage, VideoToVideo, ControlNet and more

Getting Started

OnnxStack.StableDiffusion can be found via the nuget package manager, download and install it.

PM> Install-Package OnnxStack.StableDiffusion

OnnxRuntime

Depending on the devices you have and the platform you are running on, you will want to install the Microsoft.ML.OnnxRuntime package that best suits your needs.

DirectML - CPU-GPU support for Windows (Windows)

PM> Install-Package Microsoft.ML.OnnxRuntime.DirectML

CUDA - GPU support for NVIDIA (Windows, Linux)

PM> Install-Package Microsoft.ML.OnnxRuntime.Gpu

CoreML - CPU-GPU support for Mac (Apple)

PM> Install-Package Microsoft.ML.OnnxRuntime.CoreML

Dependencies

Video processing support requires FFMpeg and FFProbe binaries, files must be present in your output folder

https://ffbinaries.com/downloads
https://github.com/ffbinaries/ffbinaries-prebuilt/releases/download/v6.1/ffmpeg-6.1-win-64.zip
https://github.com/ffbinaries/ffbinaries-prebuilt/releases/download/v6.1/ffprobe-6.1-win-64.zip

C# Stable Diffusion

Basic Stable Diffusion Example

Run a simple Stable Diffusion process with a basic prompt

//Model: 
//https://huggingface.co/runwayml/stable-diffusion-v1-5 (onnx branch)

// Create Pipeline
var pipeline = StableDiffusionPipeline.CreatePipeline("models\\stable-diffusion-v1-5");

// Set Prompt Options
var promptOptions = new PromptOptions { Prompt = "Photo of a cute dog." };

// Run Pipleine
var result = await pipeline.GenerateImageAsync(promptOptions);

// Save image result
await result.SaveAsync("D:\\Results\\Image.png");

// Unload Pipleine
await pipeline.UnloadAsync();

Stable Diffusion Batch Example

Run Stable Diffusion process and return a batch of results

//Model: 
//https://huggingface.co/runwayml/stable-diffusion-v1-5 (onnx branch)

// Create Pipeline
var pipeline = StableDiffusionPipeline.CreatePipeline("models\\stable-diffusion-v1-5");

// Prompt
var promptOptions = new PromptOptions{ Prompt = "Photo of a cat" };

// Batch Of 5 Images with unique seeds
var batchOptions = new BatchOptions
{
    ValueTo = 5,
    BatchType = BatchOptionType.Seed
};

// Run Pipleine
await foreach (var result in pipeline.RunBatchAsync(batchOptions, promptOptions))
{
    // Save Image result
   var image = new OnnxImage(result.ImageResult);
   await image.SaveAsync($"Output_Batch_{result.SchedulerOptions.Seed}.png");
}

// Unload Pipleine
await pipeline.UnloadAsync();

Stable Diffusion ImageToImage Example

Run Stable Diffusion process with an initial image as input

//Model: 
//https://huggingface.co/runwayml/stable-diffusion-v1-5 (onnx branch)

// Create Pipeline
var pipeline = StableDiffusionPipeline.CreatePipeline("models\\stable-diffusion-v1-5");

// Load Input Image
var inputImage = await OnnxImage.FromFileAsync("Input.png");

// Set Prompt Options
var promptOptions = new PromptOptions
{
    DiffuserType = DiffuserType.ImageToImage,
    Prompt = "Photo of a cute dog.",
    InputImage = inputImage
};

// Set Sheduler Options
var schedulerOptions = pipeline.DefaultSchedulerOptions with
{
    // How much the output should look like the input
    Strength = 0.8f 
};

// Run Pipleine
var result = await pipeline.GenerateImageAsync(promptOptions, schedulerOptions);

// Save image result
await result.SaveAsync("Output_ImageToImage.png");

// Unload Pipleine
await pipeline.UnloadAsync();
Input Output

Stable Diffusion ControlNet Example

Run Stable Diffusion process with ControlNet depth

//Models: 
//https://huggingface.co/axodoxian/controlnet_onnx
//https://huggingface.co/axodoxian/stable_diffusion_onnx

// Create Pipeline
var pipeline = StableDiffusionPipeline.CreatePipeline("models\\stable_diffusion_onnx", ModelType.ControlNet);

// Load ControlNet Model
var controlNet = ControlNetModel.Create("models\\controlnet_onnx\\controlnet\\depth.onnx");

// Load Control Image
var controlImage = await OnnxImage.FromFileAsync("Input_Depth.png");

// Set Prompt Options
var promptOptions = new PromptOptions
{
    DiffuserType = DiffuserType.ControlNet,
    Prompt = "Photo-realistic alien",
    InputContolImage = controlImage
};

// Run Pipleine
var result = await pipeline.GenerateImageAsync(promptOptions, controlNet: controlNet);

// Save image result
await result.SaveAsync("Output_ControlNet.png");

// Unload Pipleine
await pipeline.UnloadAsync();
Input Output

Stable Diffusion VideoToVideo Example

Run Stable Diffusion process on a video frame by frame

//Model: 
//https://huggingface.co/runwayml/stable-diffusion-v1-5 (onnx branch)

 // Create Pipeline
var pipeline = StableDiffusionPipeline.CreatePipeline("models\\stable-diffusion-v1-5");

 // Preload Models (optional)
 await pipeline.LoadAsync();

 // Load Video
 var targetFPS = 15;
 var videoInput = await OnnxVideo.FromFileAsync("Input.gif", targetFPS);

 // Add text and video to prompt
 var promptOptions = new PromptOptions
 {
     Prompt = "Elon Musk",
     DiffuserType = DiffuserType.ImageToImage,
     InputVideo = videoInput
 };

 // Run pipeline
 var result = await pipeline.GenerateVideoAsync(promptOptions);

 // Save Video File
 await result.SaveAsync("Output_VideoToVideo.mp4");

// Unload Pipleine
await pipeline.UnloadAsync();
Input Output
converted to gif for github readme converted to gif for github readme