-
Notifications
You must be signed in to change notification settings - Fork 0
/
Madhav.py
293 lines (168 loc) · 6.48 KB
/
Madhav.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from flask import Flask, request, jsonify
from flask_cors import CORS
#Used in Tensorflow Model
import numpy as np
import tensorflow as tf
import tflearn
import random
#Usde to for Contextualisation and Other NLP Tasks.
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
#Other
import json
import pickle
import warnings
warnings.filterwarnings("ignore")
app = Flask(__name__)
CORS(app)
print("Processing the Intents.....")
with open('intents.json') as json_data:
intents = json.load(json_data)
unique_tags = set()
# Iterate over each intent and add its tag to the set
for intent in intents['intents']:
unique_tags.add(intent['tag'])
# Count the total number of unique tags
total_tags = len(unique_tags)
print("Total number of unique tags:", total_tags)
intents['intents'][0]['tag']
intents['intents'][0]['responses']
words = []
classes = []
documents = []
ignore_words = ['?']
print("Looping through the Intents to Convert them to words, classes, documents and ignore_words.......")
for intent in intents['intents']:
for pattern in intent['patterns']:
# tokenize each word in the sentence
w = nltk.word_tokenize(pattern)
# add to our words list
words.extend(w)
# add to documents in our corpus
documents.append((w, intent['tag']))
# add to our classes list
if intent['tag'] not in classes:
classes.append(intent['tag'])
print("Stemming, Lowering and Removing Duplicates.......")
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
# remove duplicates
classes = sorted(list(set(classes)))
print (len(documents), "documents")
print (len(classes), "classes", classes)
print (len(words), "unique stemmed words", words)
classes
print("Creating the Data for our Model.....")
training = []
output = []
print("Creating an List (Empty) for Output.....")
output_empty = [0] * len(classes)
print("Creating Traning Set, Bag of Words for our Model....")
for doc in documents:
# initialize our bag of words
bag = []
# list of tokenized words for the pattern
pattern_words = doc[0]
# stem each word
pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
# create our bag of words array
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
# output is a '0' for each tag and '1' for current tag
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
pattern_words
print("Shuffling Randomly and Converting into Numpy Array for Faster Processing......")
random.shuffle(training)
# Convert the list of lists into a NumPy array with dtype=object
training = np.array(training, dtype=object)
print("Creating Train and Test Lists.....")
train_x = list(training[:,0])
train_y = list(training[:,1])
print("Building Neural Network for Our Chatbot to be Contextual....")
print("Resetting graph data....")
tf.compat.v1.reset_default_graph() # Use tf.compat.v1.reset_default_graph() instead
train_y
net = tflearn.input_data(shape=[None, len(train_x[0])])
net = tflearn.fully_connected(net, 128)
net = tflearn.fully_connected(net, 128)
net = tflearn.fully_connected(net, len(train_y[0]), activation='softmax')
net = tflearn.regression(net)
print("Training....")
model = tflearn.DNN(net, tensorboard_dir='tflearn_logs')
print("Training the Model.......")
model.fit(train_x, train_y, n_epoch=1000, batch_size=8, show_metric=True)
print("Saving the Model.......")
model.save('model.tflearn')
print("Pickle is also Saved..........")
pickle.dump( {'words':words, 'classes':classes, 'train_x':train_x, 'train_y':train_y}, open( "training_data", "wb" ) )
print("Loading Pickle.....")
data = pickle.load( open( "training_data", "rb" ) )
words = data['words']
classes = data['classes']
train_x = data['train_x']
train_y = data['train_y']
with open('intents.json') as json_data:
intents = json.load(json_data)
print("Loading the Model......")
# load our saved model
model.load('./model.tflearn')
def clean_up_sentence(sentence):
# It Tokenize or Break it into the constituents parts of Sentense.
sentence_words = nltk.word_tokenize(sentence)
# Stemming means to find the root of the word.
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words
# Return the Array of Bag of Words: True or False and 0 or 1 for each word of bag that exists in the Sentence
def bow(sentence, words, show_details=False):
sentence_words = clean_up_sentence(sentence)
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
bag[i] = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
ERROR_THRESHOLD = 0.25
print("ERROR_THRESHOLD = 0.25")
def classify(sentence):
# Prediction or To Get the Posibility or Probability from the Model
results = model.predict([bow(sentence, words)])[0]
# Exclude those results which are Below Threshold
results = [[i,r] for i,r in enumerate(results) if r>ERROR_THRESHOLD]
# Sorting is Done because heigher Confidence Answer comes first.
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append((classes[r[0]], r[1])) #Tuppl -> Intent and Probability
return return_list
def response(sentence, userID='123', show_details=False):
results = classify(sentence)
print (results)
# That Means if Classification is Done then Find the Matching Tag.
if results:
# Long Loop to get the Result.
while results:
for i in intents['intents']:
# Tag Finding
if i['tag'] == results[0][0]:
# Random Response from High Order Probabilities
return random.choice(i['responses'])
else:
return "Your current Search is under progress , by the time try some another search"
@app.route('/process_commute', methods=['POST'])
def process_transcript():
transcript = request.form['transcript']
print("Transcript: ",transcript)
response_text = response(transcript)
print("Response: ",response_text)
return response_text
if __name__ == '__main__':
app.run(debug=True,use_reloader=False)
while True:
user_input = input("Enter something: ")
user_response = response(user_input)
print(user_response)