forked from joshi-bharat/deep_underwater_localization
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
162 lines (129 loc) · 7.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import division, print_function
import tensorflow as tf
import numpy as np
import logging
from tqdm import trange
import args
from pose_loss import PoseRegressionLoss
from utils.data_utils import get_batch_data
from utils.misc_utils import config_learning_rate, config_optimizer, AverageMeter
from utils.nms_utils import gpu_nms
from model import yolov3
# setting loggers
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S', filename=args.progress_log_path, filemode='w')
# setting placeholders
is_training = tf.placeholder(tf.bool, name="phase_train")
handle_flag = tf.placeholder(tf.string, [], name='iterator_handle_flag')
# register the gpu nms operation here for the following evaluation scheme
pred_boxes_flag = tf.placeholder(tf.float32, [1, None, None])
pred_scores_flag = tf.placeholder(tf.float32, [1, None, None])
gpu_nms_op = gpu_nms(pred_boxes_flag, pred_scores_flag, args.class_num, args.nms_topk, args.score_threshold, args.nms_threshold)
##################
# tf.data pipeline
##################
train_dataset = tf.data.TextLineDataset(args.train_file)
train_dataset = train_dataset.shuffle(args.train_img_cnt)
train_dataset = train_dataset.batch(args.batch_size)
train_dataset = train_dataset.map(
lambda x: tf.py_func(get_batch_data,
inp=[x, args.class_num, args.img_size, args.anchors, 'train', args.multi_scale_train, args.use_mix_up, args.letterbox_resize, 10, args.nV],
Tout=[tf.int64, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32]),
num_parallel_calls=args.num_threads
)
train_dataset = train_dataset.prefetch(args.prefetech_buffer)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
train_init_op = iterator.make_initializer(train_dataset)
# get an element from the chosen dataset iterator
image_ids, image, y_true_13, y_true_26, y_true_52, slabels, y_true_13_mask, y_true_26_mask, y_true_52_mask = iterator.get_next()
y_true_mask = [y_true_13_mask, y_true_26_mask, y_true_52_mask]
y_true = [y_true_13, y_true_26, y_true_52]
# tf.data pipeline will lose the data `static` shape, so we need to set it manually
image_ids.set_shape([None])
image.set_shape([None, None, None, 3])
for y in y_true:
y.set_shape([None, None, None, None, None])
##################
# Model definition
##################
poseregression_loss = PoseRegressionLoss(args.batch_size, num_classes=1, nV=args.nV)
yolo_model = yolov3(args.class_num, args.anchors, args.use_label_smooth, args.use_focal_loss, args.batch_norm_decay, args.weight_decay, use_static_shape=False, nV=args.nV)
with tf.variable_scope('yolov3'):
pred_feature_maps = yolo_model.forward(image, is_training=is_training)
yolo_features = [pred_feature_maps[0], pred_feature_maps[1], pred_feature_maps[2]]
region_features = [pred_feature_maps[3], pred_feature_maps[4], pred_feature_maps[5]]
# single_shot_features =
loss = yolo_model.compute_loss(yolo_features, y_true)
poseloss = poseregression_loss.compute_loss(region_features, slabels, y_true_mask)
y_pred = yolo_model.predict(yolo_features)
l2_loss = tf.losses.get_regularization_loss()
# setting restore parts and vars to update
saver_to_restore = tf.train.Saver(var_list=tf.contrib.framework.get_variables_to_restore(include=args.restore_include, exclude=args.restore_exclude))
update_vars = tf.contrib.framework.get_variables_to_restore(include=args.update_part)
tf.summary.scalar('yolo_loss/total_loss', loss[0])
tf.summary.scalar('yolo_loss/loss_xy', loss[1])
tf.summary.scalar('yolo_loss/loss_wh', loss[2])
tf.summary.scalar('yolo_loss/loss_conf', loss[3])
tf.summary.scalar('yolo_loss/loss_class', loss[4])
tf.summary.scalar('loss_l2', l2_loss)
tf.summary.scalar('loss_ratio', l2_loss / (loss[0] + poseloss[0]))
tf.summary.scalar('region_loss/total_loss', poseloss[0])
tf.summary.scalar('region_loss/loss_x', poseloss[1])
tf.summary.scalar('region_loss/loss_y', poseloss[2])
tf.summary.scalar('region_loss/loss_conf', poseloss[3])
global_step = tf.Variable(float(args.global_step), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
if args.use_warm_up:
learning_rate = tf.cond(tf.less(global_step, args.train_batch_num * args.warm_up_epoch),
lambda: args.learning_rate_init * global_step / (args.train_batch_num * args.warm_up_epoch),
lambda: config_learning_rate(args, global_step - args.train_batch_num * args.warm_up_epoch))
else:
learning_rate = config_learning_rate(args, global_step)
tf.summary.scalar('learning_rate', learning_rate)
if not args.save_optimizer:
saver_to_save = tf.train.Saver()
saver_best = tf.train.Saver()
optimizer = config_optimizer(args.optimizer_name, learning_rate)
# set dependencies for BN ops
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
# apply gradient clip to avoid gradient exploding
gvs = optimizer.compute_gradients(loss[0] + poseloss[0] + l2_loss, var_list=update_vars)
clip_grad_var = [gv if gv[0] is None else [
tf.clip_by_norm(gv[0], 100.), gv[1]] for gv in gvs]
train_op = optimizer.apply_gradients(clip_grad_var, global_step=global_step)
if args.save_optimizer:
print('Saving optimizer parameters to checkpoint! Remember to restore the global_step in the fine-tuning afterwards.')
saver_to_save = tf.train.Saver(max_to_keep=20)
saver_best = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
saver_to_restore.restore(sess, args.restore_path)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(args.log_dir, sess.graph)
print('\n----------- start to train -----------\n')
best_mAP = -np.Inf
for epoch in range(args.total_epoches):
sess.run(train_init_op)
loss_total, loss_xy, loss_wh, loss_conf, loss_class = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
rloss_total, rloss_x, rloss_y, rloss_conf = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
# print(rloss)
for i in trange(args.train_batch_num):
_, summary, __y_pred, __y_true, __loss, __region_loss, __labels, __global_step, __lr = sess.run(
[train_op, merged, y_pred, y_true, loss, poseloss, slabels, global_step, learning_rate],
feed_dict={is_training: True})
writer.add_summary(summary, global_step=__global_step)
rloss_total.update(__region_loss[0])
rloss_x.update(__region_loss[1])
rloss_y.update(__region_loss[2])
rloss_conf.update(__region_loss[3])
if __global_step % args.print_step == 0 and __global_step > 0:
info = "Epoch: {}, global_step: {} | loss: total: {:.2f}, x: {:.2f}, y: {:.2f}, conf: {:.2f} | ".format(
epoch, int(__global_step), rloss_total.average, rloss_x.average, rloss_y.average, rloss_conf.average,)
print(info)
logging.info(info)
# NOTE: this is just demo. You can set the conditions when to save the weights.
if epoch % args.save_epoch == 0 and epoch > 0:
# if loss_total.average <= 2.:
saver_to_save.save(sess, args.save_dir + 'model-epoch_{}'.format(epoch))