-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nnunet_scale.py
383 lines (311 loc) · 16.7 KB
/
run_nnunet_scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import copy
import json
import shutil
from collections import defaultdict
from datetime import datetime
from os.path import join
from pathlib import Path
import cv2
import hydra
import ray
from nnunetv2.paths import nnUNet_results, nnUNet_raw, nnUNet_preprocessed
from omegaconf import DictConfig
import pandas as pd
import yaml
from run_nnunet import prepare_dir, _get_dataset_row_from_df, prepare_dataset_for_gan, find_similarity_threshold, \
train_gan_ray, train_nnunet, generate_images_ray, filter_generated_images, prepare_dataset_for_syn_nnunet, \
test_nnunet
from utils.general import setup_logging, set_random_seeds
from utils.rsync_wrapper import RsyncWrapper
def merge_syn_nnunet_datasets(cfg, rsync_w, df_dataset_id, hospitals_to_merge, hospital_target):
# get ids, names & download.
dataset_descriptor = cfg.data.dataset_descriptor
name_real_target = _get_dataset_row_from_df(df_dataset_id, hospital_target, 'real', cfg.data.fold)['dataset_name']
name_syn_target = _get_dataset_row_from_df(df_dataset_id, hospital_target, 'syn', cfg.data.fold)['dataset_name']
rsync_w.download(Path(nnUNet_preprocessed) / name_real_target, if_dir=True)
ids_syn_individ, names_syn_individ = [], []
for h in hospitals_to_merge:
row = _get_dataset_row_from_df(df_dataset_id, h, 'syn', cfg.data.fold)
ids_syn_individ.append(row['dataset_id'])
names_syn_individ.append(row['dataset_name'])
rsync_w.download(Path(nnUNet_preprocessed) / row['dataset_name'], if_dir=True)
path_preprocessed = Path(nnUNet_preprocessed)
path_orig = path_preprocessed / name_real_target
path_out = path_preprocessed / name_syn_target
if path_out.exists():
shutil.rmtree(path_out)
path_out.mkdir(parents=True)
path_out_2d = path_out / 'nnUNetPlans_2d'
path_out_2d.mkdir()
dataset_json = json.load(open(path_orig / 'dataset.json', 'r'))
'''
in practice, we will not have access to real_all, but it will still be possible to construct
its parameters based on the statistics of the datasets. Here, for convenience, just use it.
'''
i_case_out = 0
train_cases, val_cases = [], []
for name in names_syn_individ:
path_cur = path_preprocessed / name
n_cases = len(list(path_cur.glob('nnUNetPlans_2d/*.npz')))
old_to_new_name = {}
for i_case in range(n_cases):
old_name = f'{dataset_descriptor}_{i_case + 1:03d}'
case_path = path_cur / 'nnUNetPlans_2d' / old_name
new_case_name = f'{dataset_descriptor}_{i_case_out + 1:03d}'
shutil.copy(str(case_path.absolute()) + '.npz', path_out_2d / (new_case_name + '.npz'))
shutil.copy(str(case_path.absolute()) + '.pkl', path_out_2d / (new_case_name + '.pkl'))
old_to_new_name[old_name] = new_case_name
i_case_out += 1
splits_old = json.load(open(path_cur / 'splits_final.json', 'r'))
train_cases.extend([old_to_new_name[case] for case in splits_old[0]['train']])
val_cases.extend([old_to_new_name[case] for case in splits_old[0]['val']])
splits_final = [{'train': train_cases, 'val': val_cases}]
json.dump(splits_final, open(path_out / 'splits_final.json', 'w'), indent=2)
dataset_json['name'] = name_syn_target
dataset_json['numTest'] = 0
dataset_json['numTraining'] = len(train_cases) + len(val_cases)
json.dump(dataset_json, open(path_out / 'dataset.json', 'w'), indent=2)
shutil.copy(path_orig / 'dataset_fingerprint.json', path_out / 'dataset_fingerprint.json')
nnunet_plans_json = json.load(open(path_orig / 'nnUNetPlans.json', 'r'))
nnunet_plans_json['dataset_name'] = name_syn_target
json.dump(nnunet_plans_json, open(path_out / 'nnUNetPlans.json', 'w'), indent=2)
rsync_w.upload(path_out, if_dir=True)
@ray.remote
def create_syn_real_nnunet_dataset(cfg, rsync_w, df_dataset_id, hospital, syn_real_type, hospital_syn_pretrain):
# get ids, names & download.
dataset_descriptor = cfg.data.dataset_descriptor
row_real_h = _get_dataset_row_from_df(df_dataset_id, hospital, 'real', cfg.data.fold)
id_real_h, name_real_h = row_real_h['dataset_id'], row_real_h['dataset_name']
name_syn_pretrain = _get_dataset_row_from_df(df_dataset_id, hospital_syn_pretrain, 'syn', cfg.data.fold)['dataset_name']
row_syn_real_h = _get_dataset_row_from_df(df_dataset_id, hospital, syn_real_type, cfg.data.fold)
id_syn_real_h, name_syn_real_h = row_syn_real_h['dataset_id'], row_syn_real_h['dataset_name']
rsync_w.download(Path(nnUNet_preprocessed) / name_syn_pretrain, if_dir=True)
rsync_w.download(Path(nnUNet_preprocessed) / name_real_h, if_dir=True)
path_results = Path(nnUNet_results)
rsync_w.download(path_results / name_syn_pretrain, if_dir=True)
path_preprocessed = Path(nnUNet_preprocessed)
path_real_h = path_preprocessed / name_real_h
path_syn_pretrain = path_preprocessed / name_syn_pretrain
path_syn_real_h = path_preprocessed / name_syn_real_h
if path_syn_real_h.exists():
shutil.rmtree(path_syn_real_h)
shutil.copytree(path_real_h, path_syn_real_h)
# create updated nnUNetPlans.json: everything from real_h, except for configurations, which are from syn_[AB|ABCD|all)
# (to be able to use pretrained weights)
os.remove(path_syn_real_h / 'nnUNetPlans.json')
nnUNetPlans_real_h = json.load(open(path_real_h / 'nnUNetPlans.json', 'r'))
nnUNetPlans_syn_all = json.load(open(path_syn_pretrain / 'nnUNetPlans.json', 'r'))
nnUNetPlans_syn_real_h = copy.deepcopy(nnUNetPlans_real_h)
nnUNetPlans_syn_real_h['dataset_name'] = name_syn_real_h
nnUNetPlans_syn_real_h['configurations'] = nnUNetPlans_syn_all['configurations']
json.dump(nnUNetPlans_syn_real_h, open(path_syn_real_h / 'nnUNetPlans.json', 'w'), indent=2)
dataset_json = json.load(open(path_syn_real_h / 'dataset.json', 'r'))
dataset_json['name'] = name_syn_real_h
json.dump(dataset_json, open(path_syn_real_h / 'dataset.json', 'w'), indent=2)
# copy checkpoint to the 'preprocessed' dir of the new dataset, because the 'results' dir for it
# doesn't exist yet and because this makes my life easier
shutil.copy(path_results / name_syn_pretrain / 'nnUNetTrainer__nnUNetPlans__2d' / 'fold_0' / 'checkpoint_best.pth',
path_syn_real_h / 'checkpoint_best.pth')
rsync_w.upload(path_syn_real_h, if_dir=True)
@hydra.main(version_base=None, config_path="config/nnunet", config_name="cervix_debug0")
def main(cfg: DictConfig) -> None:
cv2.setNumThreads(0)
ray.init(address=cfg.general.ray_address, _temp_dir='/export/scratch1/home/aleksand/s2/tmp/ray')
rsync_w = RsyncWrapper(cfg.general.ssh_user, cfg.general.ray_head_node,
cfg.general.if_shared_fs, cfg.general.final_upload_node)
exp_dir = prepare_dir(cfg)
setup_logging(exp_dir / '_log.txt')
hospitals = list(cfg.skip.real.keys())
hospitals_except_all = [h for h in hospitals if h != 'all']
seed = cfg.general.seed_base + cfg.data.fold * 1000
def next_seed():
nonlocal seed
seed += 1
return seed
seeds = {}
# seeds need to be the same for both real & fake data:
seeds['appliedUnet'] = {h: next_seed() for h in hospitals} # nnunet by default uses a non-deterministic dataloader, making seeding meaningless.
# in general, seeds should be fixed so that if only a part of a pipeline is run, it will still have a fixed seed
seeds['GAN'] = {h: next_seed() for h in hospitals_except_all}
seeds['generate'] = {h: next_seed() for h in hospitals_except_all}
seeds['segment_generated'] = {h: next_seed() for h in hospitals_except_all}
exp_dirs = {}
for h in hospitals + ['AB', 'ABCD']:
exp_dirs[h] = exp_dir / h
(exp_dir / h).mkdir(exist_ok=True)
futures = defaultdict(list)
df_dataset_id = pd.DataFrame(yaml.safe_load(
open(Path(cfg.path.data) / cfg.data.base_dataset / 'df_dataset_id_scaling.yaml', 'r')))
print('0##| prepare_data_for_gan')
for h in hospitals_except_all:
if not cfg.skip.syn[h]['prepare_data_for_gan']:
f = prepare_dataset_for_gan.remote(cfg, rsync_w, df_dataset_id, h)
futures['prepare_data_for_gan'].append(f)
print('#0#| get prepare_data_for_gan')
for f in futures['prepare_data_for_gan']:
ray.get(f)
print('##0| got prepare_data_for_gan')
print('1##| determine thresholds')
for h in hospitals_except_all:
if not cfg.skip.syn[h]['determine_threshold']:
f = find_similarity_threshold.remote(cfg, rsync_w, df_dataset_id, h)
futures['determine_threshold'].append(f)
print('#1#| get determine_threshold')
for f in futures['determine_threshold']:
ray.get(f)
print('##1| got determine_threshold')
print('2##| GANs')
for h in hospitals_except_all:
if not cfg.skip.syn[h]['gan']:
n_gpus = 1#2 if h == 'A' else 1
f = train_gan_ray.options(**{'num_gpus': n_gpus}).remote(exp_dirs[h] / 'syn',
cfg, rsync_w,
df_dataset_id, h,
seeds['GAN'][h], n_gpus)
# if h == 'A':
# time.sleep(300)
# print('AAAAAAAAAA, added sleeping')
futures['gan'].append(f)
# time.sleep(600) # wait for the GANs to start training
print('3##| U-Net-real')
for h in hospitals:
if not cfg.skip.real[h].applied_unet_train:
f = train_nnunet.remote(cfg, rsync_w, df_dataset_id, h, 'real', exp_dirs[h] / 'real' / 'appliedUnet')
futures['unet_real'].append(f)
print('#2#| get GANs')
for f in futures['gan']:
ray.get(f)
print('##2| got GANs')
print('4##| generate images')
for h in hospitals_except_all:
if not cfg.skip.syn[h]['generate']:
n_to_generate = cfg.generate.n_images
if n_to_generate == 'auto':
row = _get_dataset_row_from_df(df_dataset_id, h, 'real', cfg.data.fold)
nnunet_dataset_name = row['dataset_name']
in_dir = Path(cfg.path.data) / (nnunet_dataset_name + '_png')
n_to_generate = len(list(filter(lambda x: 'mask' not in x.name,
in_dir.rglob('*.png'))))
n_to_generate = n_to_generate // 100 * 100 # make divisible by 100
n_to_generate *= 10 # 10 times more than the number of real images
f = generate_images_ray.remote(rsync_w,
exp_dirs[h] / 'syn' / 'gan' / 'network-snapshot-best.pkl',
n_to_generate,
exp_dirs[h] / 'syn' / 'generated', seeds['generate'][h])
futures['generate'].append(f)
print('#4#| get generate images')
for f in futures['generate']:
ray.get(f)
print('##4| got generate images')
print('5##| filter generated')
for h in hospitals_except_all:
if not cfg.skip.syn[h]['filter_generated']:
f = filter_generated_images.remote(cfg, rsync_w, df_dataset_id, h,
exp_dirs[h] / 'syn')
futures['filter_generated'].append(f)
print('#5#| get filter generated')
for f in futures['filter_generated']:
ray.get(f)
print('##5| got filter generated')
print('#3#| get U-Net-real')
for f in futures['unet_real']:
ray.get(f)
print('##3| got U-Net-real')
print('6##| segment generated images & create a nnunet dataset')
for h in hospitals_except_all:
if not cfg.skip['syn'][h]['segment']:
f = prepare_dataset_for_syn_nnunet.remote(cfg, rsync_w, df_dataset_id, h,
exp_dirs[h] / 'syn' / 'generated')
futures['segment_generated'].append(f)
print('#6#| get segmentations')
for f in futures['segment_generated']:
ray.get(f)
print('##6| got segmentations')
print('7##| merge syn AB, ABCD, all')
for merge_target, hospitals_to_be_merged in zip(['AB', 'ABCD', 'all'], [['A', 'B'], ['A', 'B', 'C', 'D'], hospitals_except_all]):
if not cfg.skip.syn[merge_target]['merge']:
merge_syn_nnunet_datasets(cfg, rsync_w, df_dataset_id, hospitals_to_be_merged, merge_target)
print('##7| merged syn AB, ABCD, all')
print('8##| U-Net-syn for merged')
for h in ['AB', 'ABCD', 'all']:
if not cfg.skip.syn[h].applied_unet_train:
f = train_nnunet.remote(cfg, rsync_w,
df_dataset_id, h, 'syn',
exp_dirs[h] / 'syn' / 'appliedUnet')
futures['unet_syn'].append(f)
print('#8#| get U-Net-syn for merged')
for f in futures['unet_syn']:
ray.get(f)
print('##8| got U-Net-syn for merged')
print('9##| create all syn_real nnunet datasets')
for syn_real_type, merge_target in zip(['syn2-real', 'syn4-real', 'syn-real'], ['AB', 'ABCD', 'all']):
for h in hospitals_except_all:
if not cfg.skip[syn_real_type][h]['prepare_data_syn_real']:
f = create_syn_real_nnunet_dataset.remote(cfg, rsync_w, df_dataset_id, h, syn_real_type, merge_target)
futures['unet_syn_real'].append(f)
print('#9#| get create all syn_real nnunet datasets')
for f in futures['unet_syn_real']:
ray.get(f)
print('##9| got create all syn_real nnunet datasets')
print('10##| U-Net-real-from-syn-pretrain')
for syn_real_type, out_siffix in zip(['syn2-real', 'syn4-real', 'syn-real'], ['syn2_pretrain', 'syn4_pretrain', 'syn_pretrain']):
for h in hospitals_except_all:
if not cfg.skip[syn_real_type][h]['applied_unet_from_syn_pretrain']:
f = train_nnunet.options(**{'num_cpus': cfg.train.num_cpus_syn_real}).remote(cfg, rsync_w, df_dataset_id, h, syn_real_type,
exp_dirs[h] / 'real' / f'appliedUnet_from_{out_siffix}',
use_pretrained_syn_all_weights=True)
futures['unet_real_from_syn_pretrain'].append(f)
print('#10#| get U-Net-real-from-syn-pretrain')
for f in futures['unet_real_from_syn_pretrain']:
ray.get(f)
print('##10| got U-Net-real-from-syn-pretrain')
print('11##| eval')
for h in hospitals + ['AB', 'ABCD']:
for h_t in hospitals_except_all: # (target)
modes_list = ['real', 'syn', 'syn-real', 'syn2-real', 'syn4-real']
if h in ['all', 'AB', 'ABCD']:
modes_list.remove('syn-real')
modes_list.remove('syn2-real')
modes_list.remove('syn4-real')
if h in ['AB', 'ABCD']:
modes_list.remove('real')
for mode in modes_list:
if not cfg.skip[mode][h]['eval'][h_t]:
mode_dir = {'real': 'real', 'syn': 'syn',
'syn-real': 'real',
'syn2-real': 'real',
'syn4-real': 'real'
}[mode]
model_dir = {'real': 'appliedUnet', 'syn': 'appliedUnet',
'syn-real': 'appliedUnet_from_syn_pretrain',
'syn2-real': 'appliedUnet_from_syn2_pretrain',
'syn4-real': 'appliedUnet_from_syn4_pretrain'
}[mode]
dir_path = exp_dirs[h] / mode_dir
dir_path.mkdir(exist_ok=True)
dir_path = dir_path / model_dir
dir_path.mkdir(exist_ok=True)
f = test_nnunet.remote(cfg, rsync_w, df_dataset_id,
h, mode, h_t,
dir_path)
futures['eval'].append(f)
print('#11#| get eval')
for f in futures['eval']:
ray.get(f)
print('##11| got eval')
print('upload_final')
rsync_w.upload_final(str(exp_dir.absolute()), if_dir=True)
for h in hospitals:
for real in ['real', 'syn', 'syn-real', 'syn2-real', 'syn4-real']:
if h == 'all' and real in ['syn-real', 'syn2-real', 'syn4-real']:
continue
row = _get_dataset_row_from_df(df_dataset_id, h, real, cfg.data.fold)
nnunet_dataset_name = row['dataset_name']
if os.path.exists(join(nnUNet_preprocessed, nnunet_dataset_name)):
rsync_w.upload(join(nnUNet_preprocessed, nnunet_dataset_name), if_dir=True)
if os.path.exists(join(nnUNet_results, nnunet_dataset_name)):
rsync_w.upload(join(nnUNet_results, nnunet_dataset_name), if_dir=True)
print('Success', datetime.now().strftime('%H:%M:%S'))
if __name__ == '__main__':
main()