This repository has been archived by the owner on Oct 8, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathMonteCarloTreeSearch.java
186 lines (153 loc) · 6.28 KB
/
MonteCarloTreeSearch.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Random;
import java.util.Scanner;
/**
* Monte Carlo Tree Search (MCTS) is a heuristic search algorithm used for
* decision-making problems, especially in games.
*
* See more: https://en.wikipedia.org/wiki/Monte_Carlo_tree_search,
* https://www.baeldung.com/java-monte-carlo-tree-search
*/
public class MonteCarloTreeSearch {
public class TreeNode {
TreeNode parentNode;
ArrayList<TreeNode> childNodes;
boolean isPlayerTurn;
boolean hasPlayerWon;
int score;
int visitCount;
public TreeNode() {
}
public TreeNode(TreeNode parentNode, boolean isPlayerTurn) {
this.parentNode = parentNode;
childNodes = new ArrayList<>();
this.isPlayerTurn = isPlayerTurn;
hasPlayerWon = false;
score = 0;
visitCount = 0;
}
}
static final int WIN_SCORE = 10;
static final int TIME_LIMIT = 500; // Time the algorithm runs (in milliseconds).
public static void main(String[] args) {
MonteCarloTreeSearch mcts = new MonteCarloTreeSearch();
Scanner scanner = new Scanner(System.in);
System.out.println("Enter the number of child nodes to expand from the root node:");
int childCount = scanner.nextInt();
mcts.monteCarloTreeSearch(mcts.new TreeNode(null, true), childCount);
scanner.close();
}
/**
* Explores a game tree using Monte Carlo Tree Search (MCTS) and returns the most promising node.
*
* @param rootNode The root node of the game tree.
* @param childCount The number of child nodes to expand from each node.
* @return The most promising child of the root node.
*/
public TreeNode monteCarloTreeSearch(TreeNode rootNode, int childCount) {
TreeNode optimalNode;
double timeLimit = System.currentTimeMillis() + TIME_LIMIT;
// Expand the root node by adding child nodes.
expandChildNodes(rootNode, childCount);
// Explore the tree until the time limit is reached.
while (System.currentTimeMillis() < timeLimit) {
TreeNode promisingNode = selectPromisingNode(rootNode);
// Expand the promising node.
if (promisingNode.childNodes.size() == 0) {
expandChildNodes(promisingNode, childCount);
}
simulatePlaythrough(promisingNode);
}
optimalNode = selectOptimalNode(rootNode);
displayNodeScores(rootNode);
System.out.format("%nThe optimal node is: %02d%n", rootNode.childNodes.indexOf(optimalNode) + 1);
return optimalNode;
}
/**
* Expands a node by adding a specified number of child nodes.
*
* @param node The node to expand.
* @param childCount The number of child nodes to add.
*/
public void expandChildNodes(TreeNode node, int childCount) {
for (int i = 0; i < childCount; i++) {
node.childNodes.add(new TreeNode(node, !node.isPlayerTurn));
}
}
/**
* Uses UCT (Upper Confidence bounds applied to Trees) to select a promising child node.
*
* @param rootNode The root node of the tree.
* @return The most promising node according to UCT.
*/
public TreeNode selectPromisingNode(TreeNode rootNode) {
TreeNode promisingNode = rootNode;
// Iterate until an unexpanded node is found.
while (promisingNode.childNodes.size() != 0) {
double highestUctValue = Double.MIN_VALUE;
int selectedIndex = 0;
// Iterate through child nodes and pick the one with the highest UCT value.
for (int i = 0; i < promisingNode.childNodes.size(); i++) {
TreeNode childNode = promisingNode.childNodes.get(i);
double uctValue;
// If child node has never been visited, it has the highest UCT value.
if (childNode.visitCount == 0) {
selectedIndex = i;
break;
}
uctValue = ((double) childNode.score / childNode.visitCount) +
1.41 * Math.sqrt(Math.log(promisingNode.visitCount) / (double) childNode.visitCount);
if (uctValue > highestUctValue) {
highestUctValue = uctValue;
selectedIndex = i;
}
}
promisingNode = promisingNode.childNodes.get(selectedIndex);
}
return promisingNode;
}
/**
* Simulates a random playthrough from the current state and backpropagates the result.
*
* @param promisingNode The node to simulate.
*/
public void simulatePlaythrough(TreeNode promisingNode) {
Random random = new Random();
TreeNode currentNode = promisingNode;
boolean playerWins;
// Randomly determine if the simulated play is a win or loss.
promisingNode.hasPlayerWon = (random.nextInt(6) == 0);
playerWins = promisingNode.hasPlayerWon;
// Backpropagate the result of the simulated play.
while (currentNode != null) {
currentNode.visitCount++;
// Add winning scores to both player and opponent depending on the turn.
if ((currentNode.isPlayerTurn && playerWins) || (!currentNode.isPlayerTurn && !playerWins)) {
currentNode.score += WIN_SCORE;
}
currentNode = currentNode.parentNode;
}
}
/**
* Selects the optimal node from the child nodes of the root node.
*
* @param rootNode The root node.
* @return The child node with the highest score.
*/
public TreeNode selectOptimalNode(TreeNode rootNode) {
return Collections.max(rootNode.childNodes, Comparator.comparing(node -> node.score));
}
/**
* Displays the scores and visit counts of the child nodes of the root node.
*
* @param rootNode The root node.
*/
public void displayNodeScores(TreeNode rootNode) {
System.out.println("Node\tScore\t\tVisits");
for (int i = 0; i < rootNode.childNodes.size(); i++) {
System.out.printf("%02d\t%d\t\t%d%n", i + 1, rootNode.childNodes.get(i).score, rootNode.childNodes.get(i).visitCount);
}
}
}