-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
224 lines (146 loc) · 5.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from numpy import pi
from matplotlib import animation
import scipy.linalg
import scipy as sp
import scipy.sparse
import scipy.sparse.linalg
import toml, time, sys
import util, field
size, delta_t, N, step = 0, 0, 0, 0
k_x, k_y, a_x, a_y = 0, 0, 0, 0
x0, y0 = 0, 0
x_axis, y_axis, X, Y = None, None, None, None
flag_intensity = False
wall_potential = 1e10
V_x, V_y = None, None
start_time = 0
wave_function = None
compteur = 0
LAPLACE_MATRIX = None
H1 = None
HX, HY = None, None
potential_boudnary = []
def init():
global x_axis, y_axis, X, Y, wave_function, start_time, H1, HX, HY, V_x, V_y
x_axis = np.linspace(-size/2, size/2, N)
y_axis = np.linspace(-size/2, size/2, N)
X, Y = np.meshgrid(x_axis, y_axis)
phase = np.exp( 1j*(X*k_x + Y*k_y))
px = np.exp( - ((x0 - X)**2)/(4*a_x**2))
py = np.exp( - ((y0 - Y)**2)/(4*a_y**2))
wave_function = phase*px*py
norm = np.sqrt(util.integrate(np.abs(wave_function)**2, N, step))
wave_function = wave_function/norm
LAPLACE_MATRIX = sp.sparse.lil_matrix(-2*sp.sparse.identity(N*N))
for i in range(N):
for j in range(N-1):
k = i*N + j
LAPLACE_MATRIX[k,k+1] = 1
LAPLACE_MATRIX[k+1,k] = 1
V_x = np.zeros(N*N, dtype='c16')
for j in range(N):
for i in range(N):
xx = i
yy = N*j
if field.isObstacle(x_axis[j], y_axis[i]):
V_x[xx+yy] = wall_potential
else:
V_x[xx+yy] = field.getPotential(x_axis[j], y_axis[i])
V_y = np.zeros(N*N, dtype='c16')
for j in range(N):
for i in range(N):
xx = j*N
yy = i
if field.isObstacle(x_axis[i], y_axis[j]):
V_y[xx+yy] = wall_potential
else:
V_y[xx+yy] = field.getPotential(x_axis[i], y_axis[j])
V_x_matrix = sp.sparse.diags([V_x], [0])
V_y_matrix = sp.sparse.diags([V_y], [0])
LAPLACE_MATRIX = LAPLACE_MATRIX/(step ** 2)
H1 = (1*sp.sparse.identity(N*N) - 1j*(delta_t/2)*(LAPLACE_MATRIX))
H1 = sp.sparse.dia_matrix(H1)
HX = (1*sp.sparse.identity(N*N) - 1j*(delta_t/2)*(LAPLACE_MATRIX - V_x_matrix))
HX = sp.sparse.dia_matrix(HX)
HY = (1*sp.sparse.identity(N*N) - 1j*(delta_t/2)*(LAPLACE_MATRIX - V_y_matrix))
HY = sp.sparse.dia_matrix(HY)
for i in range(0, N):
for j in range(0, N):
if field.isObstacle(x_axis[j], y_axis[i]):
adj = util.getAdjPos(i, j, N)
for xx, yy in adj:
if xx >= 0 and yy >= 0 and xx < N and yy <N and not field.isObstacle(x_axis[yy], y_axis[xx]):
potential_boudnary.append((i, j))
start_time = time.time()
def plot_animation(t):
global wave_function
rgb_map = None
if flag_intensity:
cmap = plt.cm.inferno
data = np.abs(wave_function)**2
norm = plt.Normalize(data.min(), data.max())
rgb_map = cmap(norm(data))
rgb_map = rgb_map[:, :, :3]
else:
rgb_map = util.colorize(wave_function)
for i, j in potential_boudnary:
rgb_map[i][j] = 1, 1, 1
plt.imshow(rgb_map, interpolation='none', extent=[-size/2,size/2,-size/2,size/2])
vector_selon_x = util.x_concatenate(wave_function, N)
vector_derive_y_selon_x = util.x_concatenate(util.dy_square(wave_function, N, step), N)
U_selon_x = vector_selon_x + (1j*delta_t/2 )*(vector_derive_y_selon_x - V_x*vector_selon_x)
U_selon_x_plus = scipy.sparse.linalg.spsolve(HX, U_selon_x)
wave_function = util.x_deconcatenate(U_selon_x_plus, N)
vector_selon_y = util.y_concatenate(wave_function, N)
vector_derive_x_selon_y = util.y_concatenate(util.dx_square(wave_function, N, step), N)
U_selon_y = vector_selon_y + (1j*delta_t/2 )*(vector_derive_x_selon_y - V_y *vector_selon_y)
U_selon_y_plus = scipy.sparse.linalg.spsolve(HY, U_selon_y)
wave_function = util.y_deconcatenate(U_selon_y_plus, N)
print_update()
def print_update():
global compteur, wave_function
NORM = np.sqrt(util.integrate(np.abs(wave_function)**2, N, step))
util.clear()
rapport = compteur/(duration*FPS)
M = 20
k = int(rapport*M)
l = M - k
to_print = '[' + k*'#' + l*'-'+ '] {0:.3f} %'
d_time = time.time() - start_time
print('--- Simulation en cours ---')
print(to_print.format(rapport*100))
print('Temps écoulé : {0:.1f} s'.format(d_time))
if rapport > 0:
print('Temps restant estimé : {0:.1f} s'.format(d_time/rapport - d_time))
print('Norme de la fonction : {0:.3f} '.format(NORM))
compteur += 1
if len(sys.argv) >= 2:
name_file = sys.argv[1]
config_toml = toml.load("config.toml")
FPS = int(config_toml["FPS"])
duration = int(config_toml["DURATION"])
size = int(config_toml["SIZE"])
N = int(config_toml["N"])
delta_t = float(config_toml["DELTA_T"])/FPS
x0 = float(config_toml['x'])
y0 = float(config_toml['y'])
k_x = float(config_toml["Kx"])
k_y = float(config_toml["Ky"])
a_x = float(config_toml["Ax"])
a_y = float(config_toml["Ay"])
field.setPotential(config_toml["V"])
field.setObstacle(config_toml["O"])
if len(sys.argv) >= 3 and "--intensity" in sys.argv[2:]:
flag_intensity = True
step = size/N
frame = duration * FPS
init()
fig = plt.figure(figsize=(5,5))
ani = animation.FuncAnimation(fig, plot_animation, frames=frame, blit=False, interval=0, repeat=False)
ani.save(name_file+'.mp4', fps=FPS)
util.launch(name_file+'.mp4')
else:
print("Veuillez entrer le nom du fichier")