forked from brain-research/self-attention-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
263 lines (218 loc) · 9.07 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The generator of SNGAN."""
import tensorflow as tf
import ops
import non_local
def upscale(x, n):
"""Builds box upscaling (also called nearest neighbors).
Args:
x: 4D image tensor in B01C format.
n: integer scale (must be a power of 2).
Returns:
4D tensor of images up scaled by a factor n.
"""
if n == 1:
return x
return tf.batch_to_space(tf.tile(x, [n**2, 1, 1, 1]), [[0, 0], [0, 0]], n)
def usample_tpu(x):
"""Upscales the width and height of the input vector by a factor of 2."""
x = upscale(x, 2)
return x
def usample(x):
_, nh, nw, nx = x.get_shape().as_list()
x = tf.image.resize_nearest_neighbor(x, [nh * 2, nw * 2])
return x
def block_no_sn(x, labels, out_channels, num_classes, is_training, name):
"""Builds the residual blocks used in the generator.
Compared with block, optimized_block always downsamples the spatial resolution
of the input vector by a factor of 4.
Args:
x: The 4D input vector.
labels: The conditional labels in the generation.
out_channels: Number of features in the output layer.
num_classes: Number of classes in the labels.
name: The variable scope name for the block.
Returns:
A `Tensor` representing the output of the operation.
"""
with tf.variable_scope(name):
bn0 = ops.ConditionalBatchNorm(num_classes, name='cbn_0')
bn1 = ops.ConditionalBatchNorm(num_classes, name='cbn_1')
x_0 = x
x = tf.nn.relu(bn0(x, labels, is_training))
x = usample(x)
x = ops.conv2d(x, out_channels, 3, 3, 1, 1, name='conv1')
x = tf.nn.relu(bn1(x, labels, is_training))
x = ops.conv2d(x, out_channels, 3, 3, 1, 1, name='conv2')
x_0 = usample(x_0)
x_0 = ops.conv2d(x_0, out_channels, 1, 1, 1, 1, name='conv3')
return x_0 + x
def block(x, labels, out_channels, num_classes, is_training, name):
with tf.variable_scope(name):
bn0 = ops.ConditionalBatchNorm(num_classes, name='cbn_0')
bn1 = ops.ConditionalBatchNorm(num_classes, name='cbn_1')
x_0 = x
x = tf.nn.relu(bn0(x, labels, is_training))
x = usample(x)
x = ops.snconv2d(x, out_channels, 3, 3, 1, 1, name='snconv1')
x = tf.nn.relu(bn1(x, labels, is_training))
x = ops.snconv2d(x, out_channels, 3, 3, 1, 1, name='snconv2')
x_0 = usample(x_0)
x_0 = ops.snconv2d(x_0, out_channels, 1, 1, 1, 1, name='snconv3')
return x_0 + x
def generator_old(zs,
target_class,
gf_dim,
num_classes,
is_training=True,
scope='Generator'):
"""Builds the generator graph propagating from z to x.
Args:
zs: The list of noise tensors.
target_class: The conditional labels in the generation.
gf_dim: The gf dimension.
num_classes: Number of classes in the labels.
scope: Optional scope for `variable_op_scope`.
Returns:
outputs: The output layer of the generator.
"""
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
# project `z` and reshape
act0 = ops.linear(zs, gf_dim * 16 * 4 * 4, scope='g_h0')
act0 = tf.reshape(act0, [-1, 4, 4, gf_dim * 16])
act1 = block_no_sn(act0, target_class, gf_dim * 16,
num_classes, is_training, 'g_block1') # 8 * 8
act2 = block_no_sn(act1, target_class, gf_dim * 8,
num_classes, is_training, 'g_block2') # 16 * 16
act3 = block_no_sn(act2, target_class, gf_dim * 4,
num_classes, is_training, 'g_block3') # 32 * 32
act4 = block_no_sn(act3, target_class, gf_dim * 2,
num_classes, is_training, 'g_block4') # 64 * 64
act5 = block_no_sn(act4, target_class, gf_dim,
num_classes, is_training, 'g_block5') # 128 * 128
bn = ops.batch_norm(name='g_bn')
act5 = tf.nn.relu(bn(act5, is_training))
act6 = ops.conv2d(act5, 3, 3, 3, 1, 1, name='g_conv_last')
out = tf.nn.tanh(act6)
print('GAN baseline with moving average')
return out
def generator(zs,
target_class,
gf_dim,
num_classes,
is_training=True):
"""Builds the generator graph propagating from z to x.
Args:
zs: The list of noise tensors.
target_class: The conditional labels in the generation.
gf_dim: The gf dimension.
num_classes: Number of classes in the labels.
scope: Optional scope for `variable_op_scope`.
Returns:
outputs: The output layer of the generator.
"""
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
# project `z` and reshape
act0 = ops.snlinear(zs, gf_dim * 16 * 4 * 4, name='g_snh0')
act0 = tf.reshape(act0, [-1, 4, 4, gf_dim * 16])
act1 = block(act0, target_class, gf_dim * 16,
num_classes, is_training, 'g_block1') # 8 * 8
act2 = block(act1, target_class, gf_dim * 8,
num_classes, is_training, 'g_block2') # 16 * 16
act3 = block(act2, target_class, gf_dim * 4,
num_classes, is_training, 'g_block3') # 32 * 32
act4 = block(act3, target_class, gf_dim * 2,
num_classes, is_training, 'g_block4') # 64 * 64
act5 = block(act4, target_class, gf_dim,
num_classes, is_training, 'g_block5') # 128 * 128
bn = ops.batch_norm(name='g_bn')
act5 = tf.nn.relu(bn(act5, is_training))
act6 = ops.snconv2d(act5, 3, 3, 3, 1, 1, name='g_snconv_last')
out = tf.nn.tanh(act6)
print('Generator Structure')
return out
def generator_test(zs,
target_class,
gf_dim,
num_classes,
is_training=True):
"""Builds the generator graph propagating from z to x.
Args:
zs: The list of noise tensors.
target_class: The conditional labels in the generation.
gf_dim: The gf dimension.
num_classes: Number of classes in the labels.
scope: Optional scope for `variable_op_scope`.
Returns:
outputs: The output layer of the generator.
"""
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
# project `z` and reshape
act0 = ops.snlinear(zs, gf_dim * 16 * 4 * 4, name='g_snh0')
act0 = tf.reshape(act0, [-1, 4, 4, gf_dim * 16])
act1 = block(act0, target_class, gf_dim * 16,
num_classes, is_training, 'g_block1') # 8 * 8
act2 = block(act1, target_class, gf_dim * 8,
num_classes, is_training, 'g_block2') # 16 * 16
act3 = block(act2, target_class, gf_dim * 4,
num_classes, is_training, 'g_block3') # 32 * 32
act3 = non_local.sn_non_local_block_sim(act3, None, name='g_non_local')
act4 = block(act3, target_class, gf_dim * 2,
num_classes, is_training, 'g_block4') # 64 * 64
act5 = block(act4, target_class, gf_dim,
num_classes, is_training, 'g_block5') # 128 * 128
bn = ops.batch_norm(name='g_bn')
act5 = tf.nn.relu(bn(act5, is_training))
act6 = ops.snconv2d(act5, 3, 3, 3, 1, 1, name='g_snconv_last')
out = tf.nn.tanh(act6)
print('Generator TEST structure')
return out
def generator_test_64(zs,
target_class,
gf_dim,
num_classes,
is_training=True):
"""Builds the generator graph propagating from z to x.
Args:
zs: The list of noise tensors.
target_class: The conditional labels in the generation.
gf_dim: The gf dimension.
num_classes: Number of classes in the labels.
scope: Optional scope for `variable_op_scope`.
Returns:
outputs: The output layer of the generator.
"""
with tf.variable_scope('model', reuse=tf.AUTO_REUSE):
# project `z` and reshape
act0 = ops.snlinear(zs, gf_dim * 16 * 4 * 4, name='g_snh0')
act0 = tf.reshape(act0, [-1, 4, 4, gf_dim * 16])
act1 = block(act0, target_class, gf_dim * 16,
num_classes, is_training, 'g_block1') # 8 * 8
act2 = block(act1, target_class, gf_dim * 8,
num_classes, is_training, 'g_block2') # 16 * 16
act3 = block(act2, target_class, gf_dim * 4,
num_classes, is_training, 'g_block3') # 32 * 32
act4 = block(act3, target_class, gf_dim * 2,
num_classes, is_training, 'g_block4') # 64 * 64
act4 = non_local.sn_non_local_block_sim(act4, None, name='g_non_local')
act5 = block(act4, target_class, gf_dim,
num_classes, is_training, 'g_block5') # 128 * 128
bn = ops.batch_norm(name='g_bn')
act5 = tf.nn.relu(bn(act5, is_training))
act6 = ops.snconv2d(act5, 3, 3, 3, 1, 1, name='g_snconv_last')
out = tf.nn.tanh(act6)
print('GAN test with moving average')
return out