-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest.py
executable file
·240 lines (184 loc) · 6.99 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# -*- coding: utf-8 -*-
"""
Bone Age Assessment BoNet test routine.
"""
# Standard lib imports
import os
import csv
import glob
import time
import argparse
import warnings
import pandas as pd
import os.path as osp
# PyTorch imports
import torch
import torch.nn as nn
import torch.optim as optim
import horovod.torch as hvd
from torchvision import transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
# Local imports
from models.bonet import BoNet
from data.boneage_loader import BoneageDataset
# Other imports
from tqdm import tqdm
import pdb
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
# Dataloading-related settings
parser.add_argument('--heatmaps', default=False, action='store_true',
help='Test model with gaussian heatmaps')
parser.add_argument('--cropped', default=False, action='store_true',
help='Test model with cropped images according to bbox')
parser.add_argument('--dataset', default='RSNA', type=str,choices=['RSNA','RHPE'],
help='Dataset to perform test')
# Dataloading-related settings
parser.add_argument('--data-test', default='data/test/', type=str,
help='path to test data folder')
parser.add_argument('--ann-path-test', default='test.csv', type=str,
help='path to BAA annotations file')
parser.add_argument('--rois-path-test', default='test.json',
type=str, help='path to ROIs annotations in coco format')
parser.add_argument('--save-folder', default='TRAIN/new_test/',
help='location to save checkpoint models')
parser.add_argument('--snapshot', default='boneage_bonet_weights.pth',
help='path to weight snapshot file')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Training procedure settings
parser.add_argument('--batch-size', default=1, type=int,
help='Batch size for training')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--gpu', type=str, default='2,3')
args = parser.parse_args()
args_dict = vars(args)
print('Argument list to program')
print('\n'.join(['--{0} {1}'.format(arg, args_dict[arg])
for arg in args_dict]))
print('\n\n')
torch.manual_seed(args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if not os.path.exists(os.path.join(args.save_folder, 'inference')):
os.makedirs(os.path.join(args.save_folder, 'inference'))
# Horovod settings
hvd.init()
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(hvd.size())
args.distributed = hvd.size() > 1
args.rank = hvd.rank()
args.size = hvd.size()
# CREATE THE NETWORK ARCHITECTURE AND LOAD THE BEST MODEL
if args.heatmaps:
from models.bonet_heatmap import BoNet
else:
from models.bonet import BoNet
net = BoNet()
if args.rank == 0:
print('---> Number of params: {}'.format(
sum([p.data.nelement() for p in net.parameters()])))
if osp.exists(args.snapshot):
model_to_load=args.snapshot
else:
model_to_load=args.save_folder+'/'+args.snapshot
if osp.exists(model_to_load) and args.rank == 0:
print('Loading state dict from: {0}'.format(model_to_load))
snapshot_dict = torch.load(model_to_load, map_location=lambda storage, loc: storage)
weights= net.state_dict()
new_snapshot_dict=snapshot_dict.copy()
for key in snapshot_dict:
if key not in weights.keys():
new_key='inception_v3.'+key
new_snapshot_dict[new_key]=snapshot_dict[key]
new_snapshot_dict.pop(key)
net.load_state_dict(new_snapshot_dict)
net = net.to(device)
# Criterion
criterion = nn.L1Loss()
# Horovod
hvd.broadcast_parameters(net.state_dict(), root_rank=0)
# Dataloader
test_transform = transforms.Compose([transforms.Resize((500, 500)),
transforms.ToTensor()])
if args.heatmaps:
from data.data_loader import Boneage_HeatmapDataset as Dataset
else:
from data.data_loader import BoneageDataset as Dataset
test_dataset = Dataset(args.data_test, args.ann_path_test,args.rois_path_test,
img_transform=test_transform,crop=args.cropped,dataset=args.dataset)
# Data samplers
test_sampler = None
if args.distributed:
test_sampler = DistributedSampler(test_dataset,
num_replicas=args.size,
rank=args.rank)
test_loader = DataLoader(test_dataset,
shuffle=False,
sampler=test_sampler,
batch_size=1,
num_workers=args.workers)
def main():
print('Inference begins...')
carpograms = pd.read_csv(os.path.join('Paths', args.ann_path_test))
ids = carpograms.ix[:, 0]
p_dict = dict.fromkeys(ids)
p_dict = test(args, net, test_loader, test_sampler,
criterion, p_dict)
df = pd.DataFrame.from_dict(p_dict, orient="index")
df.to_csv(os.path.join(args.save_folder, 'test.csv'))
def evaluate():
net.eval()
epoch_total_loss = AverageMeter()
for (batch_idx, (imgs, bone_ages, genders, _)) in enumerate(test_loader):
imgs = imgs.to(device)
bone_ages = bone_ages.to(device)
genders = genders.to(device)
with torch.no_grad():
outputs = net(imgs, genders)
loss = criterion(outputs.squeeze(), bone_ages)
loss = metric_average(loss.item(), 'loss')
epoch_total_loss.update(loss, 1)
epoch_total_loss = epoch_total_loss.avg
if args.rank == 0:
print('Val loss: {:.5f}'.format(epoch_total_loss))
return epoch_total_loss
def test(args, net, loader, sampler, criterion, p_dict):
net.eval()
epoch_loss = AverageMeter()
with torch.no_grad():
for i, batch in tqdm(enumerate(test_loader, 0)):
inputs, labels, gender, p_id = batch
inputs, gender = Variable(inputs).cuda(), Variable(gender).cuda()
labels = Variable(labels).cuda()
outputs = net(inputs, gender)
p_dict[p_id] = outputs
loss = criterion(outputs.squeeze_(), labels)
epoch_loss.update(loss)
loss = metric_average(epoch_loss.avg,'loss')
if args.rank == 0:
print('Test loss: {}'.format(loss))
return p_dict
def metric_average(val, name):
tensor = torch.tensor(val)
avg_tensor = hvd.allreduce(tensor, name=name)
return avg_tensor.item()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()