-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvivek_solution.html
1062 lines (953 loc) · 254 KB
/
vivek_solution.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<HTML lang = "en">
<HEAD>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Wastewater treatment simulations example (Vivek's solution)</title>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]},
TeX: { equationNumbers: { autoNumber: "AMS" } }
});
</script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<style>
pre.hljl {
border: 1px solid #ccc;
margin: 5px;
padding: 5px;
overflow-x: auto;
color: rgb(68,68,68); background-color: rgb(251,251,251); }
pre.hljl > span.hljl-t { }
pre.hljl > span.hljl-w { }
pre.hljl > span.hljl-e { }
pre.hljl > span.hljl-eB { }
pre.hljl > span.hljl-o { }
pre.hljl > span.hljl-k { color: rgb(148,91,176); font-weight: bold; }
pre.hljl > span.hljl-kc { color: rgb(59,151,46); font-style: italic; }
pre.hljl > span.hljl-kd { color: rgb(214,102,97); font-style: italic; }
pre.hljl > span.hljl-kn { color: rgb(148,91,176); font-weight: bold; }
pre.hljl > span.hljl-kp { color: rgb(148,91,176); font-weight: bold; }
pre.hljl > span.hljl-kr { color: rgb(148,91,176); font-weight: bold; }
pre.hljl > span.hljl-kt { color: rgb(148,91,176); font-weight: bold; }
pre.hljl > span.hljl-n { }
pre.hljl > span.hljl-na { }
pre.hljl > span.hljl-nb { }
pre.hljl > span.hljl-nbp { }
pre.hljl > span.hljl-nc { }
pre.hljl > span.hljl-ncB { }
pre.hljl > span.hljl-nd { color: rgb(214,102,97); }
pre.hljl > span.hljl-ne { }
pre.hljl > span.hljl-neB { }
pre.hljl > span.hljl-nf { color: rgb(66,102,213); }
pre.hljl > span.hljl-nfm { color: rgb(66,102,213); }
pre.hljl > span.hljl-np { }
pre.hljl > span.hljl-nl { }
pre.hljl > span.hljl-nn { }
pre.hljl > span.hljl-no { }
pre.hljl > span.hljl-nt { }
pre.hljl > span.hljl-nv { }
pre.hljl > span.hljl-nvc { }
pre.hljl > span.hljl-nvg { }
pre.hljl > span.hljl-nvi { }
pre.hljl > span.hljl-nvm { }
pre.hljl > span.hljl-l { }
pre.hljl > span.hljl-ld { color: rgb(148,91,176); font-style: italic; }
pre.hljl > span.hljl-s { color: rgb(201,61,57); }
pre.hljl > span.hljl-sa { color: rgb(201,61,57); }
pre.hljl > span.hljl-sb { color: rgb(201,61,57); }
pre.hljl > span.hljl-sc { color: rgb(201,61,57); }
pre.hljl > span.hljl-sd { color: rgb(201,61,57); }
pre.hljl > span.hljl-sdB { color: rgb(201,61,57); }
pre.hljl > span.hljl-sdC { color: rgb(201,61,57); }
pre.hljl > span.hljl-se { color: rgb(59,151,46); }
pre.hljl > span.hljl-sh { color: rgb(201,61,57); }
pre.hljl > span.hljl-si { }
pre.hljl > span.hljl-so { color: rgb(201,61,57); }
pre.hljl > span.hljl-sr { color: rgb(201,61,57); }
pre.hljl > span.hljl-ss { color: rgb(201,61,57); }
pre.hljl > span.hljl-ssB { color: rgb(201,61,57); }
pre.hljl > span.hljl-nB { color: rgb(59,151,46); }
pre.hljl > span.hljl-nbB { color: rgb(59,151,46); }
pre.hljl > span.hljl-nfB { color: rgb(59,151,46); }
pre.hljl > span.hljl-nh { color: rgb(59,151,46); }
pre.hljl > span.hljl-ni { color: rgb(59,151,46); }
pre.hljl > span.hljl-nil { color: rgb(59,151,46); }
pre.hljl > span.hljl-noB { color: rgb(59,151,46); }
pre.hljl > span.hljl-oB { color: rgb(102,102,102); font-weight: bold; }
pre.hljl > span.hljl-ow { color: rgb(102,102,102); font-weight: bold; }
pre.hljl > span.hljl-p { }
pre.hljl > span.hljl-c { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-ch { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-cm { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-cp { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-cpB { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-cs { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-csB { color: rgb(153,153,119); font-style: italic; }
pre.hljl > span.hljl-g { }
pre.hljl > span.hljl-gd { }
pre.hljl > span.hljl-ge { }
pre.hljl > span.hljl-geB { }
pre.hljl > span.hljl-gh { }
pre.hljl > span.hljl-gi { }
pre.hljl > span.hljl-go { }
pre.hljl > span.hljl-gp { }
pre.hljl > span.hljl-gs { }
pre.hljl > span.hljl-gsB { }
pre.hljl > span.hljl-gt { }
</style>
<style type="text/css">
@font-face {
font-style: normal;
font-weight: 300;
}
@font-face {
font-style: normal;
font-weight: 400;
}
@font-face {
font-style: normal;
font-weight: 600;
}
html {
font-family: sans-serif; /* 1 */
-ms-text-size-adjust: 100%; /* 2 */
-webkit-text-size-adjust: 100%; /* 2 */
}
body {
margin: 0;
}
article,
aside,
details,
figcaption,
figure,
footer,
header,
hgroup,
main,
menu,
nav,
section,
summary {
display: block;
}
audio,
canvas,
progress,
video {
display: inline-block; /* 1 */
vertical-align: baseline; /* 2 */
}
audio:not([controls]) {
display: none;
height: 0;
}
[hidden],
template {
display: none;
}
a:active,
a:hover {
outline: 0;
}
abbr[title] {
border-bottom: 1px dotted;
}
b,
strong {
font-weight: bold;
}
dfn {
font-style: italic;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
mark {
background: #ff0;
color: #000;
}
small {
font-size: 80%;
}
sub,
sup {
font-size: 75%;
line-height: 0;
position: relative;
vertical-align: baseline;
}
sup {
top: -0.5em;
}
sub {
bottom: -0.25em;
}
img {
border: 0;
}
svg:not(:root) {
overflow: hidden;
}
figure {
margin: 1em 40px;
}
hr {
-moz-box-sizing: content-box;
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre,
samp {
font-family: monospace, monospace;
font-size: 1em;
}
button,
input,
optgroup,
select,
textarea {
color: inherit; /* 1 */
font: inherit; /* 2 */
margin: 0; /* 3 */
}
button {
overflow: visible;
}
button,
select {
text-transform: none;
}
button,
html input[type="button"], /* 1 */
input[type="reset"],
input[type="submit"] {
-webkit-appearance: button; /* 2 */
cursor: pointer; /* 3 */
}
button[disabled],
html input[disabled] {
cursor: default;
}
button::-moz-focus-inner,
input::-moz-focus-inner {
border: 0;
padding: 0;
}
input {
line-height: normal;
}
input[type="checkbox"],
input[type="radio"] {
box-sizing: border-box; /* 1 */
padding: 0; /* 2 */
}
input[type="number"]::-webkit-inner-spin-button,
input[type="number"]::-webkit-outer-spin-button {
height: auto;
}
input[type="search"] {
-webkit-appearance: textfield; /* 1 */
-moz-box-sizing: content-box;
-webkit-box-sizing: content-box; /* 2 */
box-sizing: content-box;
}
input[type="search"]::-webkit-search-cancel-button,
input[type="search"]::-webkit-search-decoration {
-webkit-appearance: none;
}
fieldset {
border: 1px solid #c0c0c0;
margin: 0 2px;
padding: 0.35em 0.625em 0.75em;
}
legend {
border: 0; /* 1 */
padding: 0; /* 2 */
}
textarea {
overflow: auto;
}
optgroup {
font-weight: bold;
}
table {
font-family: monospace, monospace;
font-size : 0.8em;
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
thead th {
border-bottom: 1px solid black;
background-color: white;
}
tr:nth-child(odd){
background-color: rgb(248,248,248);
}
/*
* Skeleton V2.0.4
* Copyright 2014, Dave Gamache
* www.getskeleton.com
* Free to use under the MIT license.
* http://www.opensource.org/licenses/mit-license.php
* 12/29/2014
*/
.container {
position: relative;
width: 100%;
max-width: 960px;
margin: 0 auto;
padding: 0 20px;
box-sizing: border-box; }
.column,
.columns {
width: 100%;
float: left;
box-sizing: border-box; }
@media (min-width: 400px) {
.container {
width: 85%;
padding: 0; }
}
@media (min-width: 550px) {
.container {
width: 80%; }
.column,
.columns {
margin-left: 4%; }
.column:first-child,
.columns:first-child {
margin-left: 0; }
.one.column,
.one.columns { width: 4.66666666667%; }
.two.columns { width: 13.3333333333%; }
.three.columns { width: 22%; }
.four.columns { width: 30.6666666667%; }
.five.columns { width: 39.3333333333%; }
.six.columns { width: 48%; }
.seven.columns { width: 56.6666666667%; }
.eight.columns { width: 65.3333333333%; }
.nine.columns { width: 74.0%; }
.ten.columns { width: 82.6666666667%; }
.eleven.columns { width: 91.3333333333%; }
.twelve.columns { width: 100%; margin-left: 0; }
.one-third.column { width: 30.6666666667%; }
.two-thirds.column { width: 65.3333333333%; }
.one-half.column { width: 48%; }
/* Offsets */
.offset-by-one.column,
.offset-by-one.columns { margin-left: 8.66666666667%; }
.offset-by-two.column,
.offset-by-two.columns { margin-left: 17.3333333333%; }
.offset-by-three.column,
.offset-by-three.columns { margin-left: 26%; }
.offset-by-four.column,
.offset-by-four.columns { margin-left: 34.6666666667%; }
.offset-by-five.column,
.offset-by-five.columns { margin-left: 43.3333333333%; }
.offset-by-six.column,
.offset-by-six.columns { margin-left: 52%; }
.offset-by-seven.column,
.offset-by-seven.columns { margin-left: 60.6666666667%; }
.offset-by-eight.column,
.offset-by-eight.columns { margin-left: 69.3333333333%; }
.offset-by-nine.column,
.offset-by-nine.columns { margin-left: 78.0%; }
.offset-by-ten.column,
.offset-by-ten.columns { margin-left: 86.6666666667%; }
.offset-by-eleven.column,
.offset-by-eleven.columns { margin-left: 95.3333333333%; }
.offset-by-one-third.column,
.offset-by-one-third.columns { margin-left: 34.6666666667%; }
.offset-by-two-thirds.column,
.offset-by-two-thirds.columns { margin-left: 69.3333333333%; }
.offset-by-one-half.column,
.offset-by-one-half.columns { margin-left: 52%; }
}
html {
font-size: 62.5%; }
body {
font-size: 1.5em; /* currently ems cause chrome bug misinterpreting rems on body element */
line-height: 1.6;
font-weight: 400;
font-family: "Raleway", "HelveticaNeue", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: #222; }
h1, h2, h3, h4, h5, h6 {
margin-top: 0;
margin-bottom: 2rem;
font-weight: 300; }
h1 { font-size: 3.6rem; line-height: 1.2; letter-spacing: -.1rem;}
h2 { font-size: 3.4rem; line-height: 1.25; letter-spacing: -.1rem; }
h3 { font-size: 3.2rem; line-height: 1.3; letter-spacing: -.1rem; }
h4 { font-size: 2.8rem; line-height: 1.35; letter-spacing: -.08rem; }
h5 { font-size: 2.4rem; line-height: 1.5; letter-spacing: -.05rem; }
h6 { font-size: 1.5rem; line-height: 1.6; letter-spacing: 0; }
p {
margin-top: 0; }
a {
color: #1EAEDB; }
a:hover {
color: #0FA0CE; }
.button,
button,
input[type="submit"],
input[type="reset"],
input[type="button"] {
display: inline-block;
height: 38px;
padding: 0 30px;
color: #555;
text-align: center;
font-size: 11px;
font-weight: 600;
line-height: 38px;
letter-spacing: .1rem;
text-transform: uppercase;
text-decoration: none;
white-space: nowrap;
background-color: transparent;
border-radius: 4px;
border: 1px solid #bbb;
cursor: pointer;
box-sizing: border-box; }
.button:hover,
button:hover,
input[type="submit"]:hover,
input[type="reset"]:hover,
input[type="button"]:hover,
.button:focus,
button:focus,
input[type="submit"]:focus,
input[type="reset"]:focus,
input[type="button"]:focus {
color: #333;
border-color: #888;
outline: 0; }
.button.button-primary,
button.button-primary,
input[type="submit"].button-primary,
input[type="reset"].button-primary,
input[type="button"].button-primary {
color: #FFF;
background-color: #33C3F0;
border-color: #33C3F0; }
.button.button-primary:hover,
button.button-primary:hover,
input[type="submit"].button-primary:hover,
input[type="reset"].button-primary:hover,
input[type="button"].button-primary:hover,
.button.button-primary:focus,
button.button-primary:focus,
input[type="submit"].button-primary:focus,
input[type="reset"].button-primary:focus,
input[type="button"].button-primary:focus {
color: #FFF;
background-color: #1EAEDB;
border-color: #1EAEDB; }
input[type="email"],
input[type="number"],
input[type="search"],
input[type="text"],
input[type="tel"],
input[type="url"],
input[type="password"],
textarea,
select {
height: 38px;
padding: 6px 10px; /* The 6px vertically centers text on FF, ignored by Webkit */
background-color: #fff;
border: 1px solid #D1D1D1;
border-radius: 4px;
box-shadow: none;
box-sizing: border-box; }
/* Removes awkward default styles on some inputs for iOS */
input[type="email"],
input[type="number"],
input[type="search"],
input[type="text"],
input[type="tel"],
input[type="url"],
input[type="password"],
textarea {
-webkit-appearance: none;
-moz-appearance: none;
appearance: none; }
textarea {
min-height: 65px;
padding-top: 6px;
padding-bottom: 6px; }
input[type="email"]:focus,
input[type="number"]:focus,
input[type="search"]:focus,
input[type="text"]:focus,
input[type="tel"]:focus,
input[type="url"]:focus,
input[type="password"]:focus,
textarea:focus,
select:focus {
border: 1px solid #33C3F0;
outline: 0; }
label,
legend {
display: block;
margin-bottom: .5rem;
font-weight: 600; }
fieldset {
padding: 0;
border-width: 0; }
input[type="checkbox"],
input[type="radio"] {
display: inline; }
label > .label-body {
display: inline-block;
margin-left: .5rem;
font-weight: normal; }
ul {
list-style: circle; }
ol {
list-style: decimal; }
ul ul,
ul ol,
ol ol,
ol ul {
margin: 1.5rem 0 1.5rem 3rem;
font-size: 90%; }
li > p {margin : 0;}
th,
td {
padding: 12px 15px;
text-align: left;
border-bottom: 1px solid #E1E1E1; }
th:first-child,
td:first-child {
padding-left: 0; }
th:last-child,
td:last-child {
padding-right: 0; }
button,
.button {
margin-bottom: 1rem; }
input,
textarea,
select,
fieldset {
margin-bottom: 1.5rem; }
pre,
blockquote,
dl,
figure,
table,
p,
ul,
ol,
form {
margin-bottom: 1.0rem; }
.u-full-width {
width: 100%;
box-sizing: border-box; }
.u-max-full-width {
max-width: 100%;
box-sizing: border-box; }
.u-pull-right {
float: right; }
.u-pull-left {
float: left; }
hr {
margin-top: 3rem;
margin-bottom: 3.5rem;
border-width: 0;
border-top: 1px solid #E1E1E1; }
.container:after,
.row:after,
.u-cf {
content: "";
display: table;
clear: both; }
pre {
display: block;
padding: 9.5px;
margin: 0 0 10px;
font-size: 13px;
line-height: 1.42857143;
word-break: break-all;
word-wrap: break-word;
border: 1px solid #ccc;
border-radius: 4px;
}
pre.hljl {
margin: 0 0 10px;
display: block;
background: #f5f5f5;
border-radius: 4px;
padding : 5px;
}
pre.output {
background: #ffffff;
}
pre.code {
background: #ffffff;
}
pre.julia-error {
color : red
}
code,
kbd,
pre,
samp {
font-family: Menlo, Monaco, Consolas, "Courier New", monospace;
font-size: 0.9em;
}
@media (min-width: 400px) {}
@media (min-width: 550px) {}
@media (min-width: 750px) {}
@media (min-width: 1000px) {}
@media (min-width: 1200px) {}
h1.title {margin-top : 20px}
img {max-width : 100%}
div.title {text-align: center;}
</style>
</HEAD>
<BODY>
<div class ="container">
<div class = "row">
<div class = "col-md-12 twelve columns">
<div class="title">
<h1 class="title">Wastewater treatment simulations example (Vivek's solution)</h1>
<h5>BEE 4750/5750</h5>
<h5>Fall 2022</h5>
</div>
<pre class='hljl'>
<span class='hljl-cs'># activate and instantiate the environment</span><span class='hljl-t'>
</span><span class='hljl-k'>import</span><span class='hljl-t'> </span><span class='hljl-n'>Pkg</span><span class='hljl-t'>
</span><span class='hljl-n'>Pkg</span><span class='hljl-oB'>.</span><span class='hljl-nf'>activate</span><span class='hljl-p'>(</span><span class='hljl-nf'>dirname</span><span class='hljl-p'>(</span><span class='hljl-nd'>@__FILE__</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-n'>Pkg</span><span class='hljl-oB'>.</span><span class='hljl-nf'>instantiate</span><span class='hljl-p'>()</span><span class='hljl-t'>
</span><span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>Plots</span><span class='hljl-t'> </span><span class='hljl-cs'># plotting library</span><span class='hljl-t'>
</span><span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>Random</span><span class='hljl-t'> </span><span class='hljl-cs'># tools for random number generation</span><span class='hljl-t'>
</span><span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>Distributions</span><span class='hljl-t'> </span><span class='hljl-cs'># probability distribution library</span><span class='hljl-t'>
</span><span class='hljl-k'>using</span><span class='hljl-t'> </span><span class='hljl-n'>StatsPlots</span><span class='hljl-t'> </span><span class='hljl-cs'># additional statistical plotting functionality</span>
</pre>
<p>CRUD is released and carried downriver according to this diagram:</p>
<p><img src="figures/river_diagram.png" alt="CRUD Simulation Diagram" /></p>
<p>The statuatory regulation is that CRUD concentrations cannot exceed <span class="math">$1$</span> mg/L. Environmental authorities have recently found that the concentrations in the river are in excess of this value. We would like to devise a treatment plan to bring the system back into compliance.</p>
<p>Recall that the first-order decay rate of CRUD in the river is <span class="math">$k=0.45 \ \text{d}^{-1}$</span>. For treatment efficiencies <span class="math">$E_i$</span> at each waste source <span class="math">$i$</span>, the mass of CRUD at every distance <span class="math">$x$</span> downriver from the initial inflow (<span class="math">$x=0$</span>) is:</p>
<p class="math">\[
M(x) = \begin{cases} (1100 - 1000 E_1) \exp(-0.45x/25) \ \text{kg/d} & x < 10 \\
\left[(1100 - 1000 E_1) \exp(-0.18) + 1200 (1 - E_2)\right]\exp(-0.45(x-10)/25) \ \text{kg/d} & x > 10
\end{cases}
\]</p>
<p>The cost of treating CRUD is quadratic in <span class="math">$E_1$</span> and <span class="math">$E_2$</span>, namely:</p>
<p class="math">\[
C(E_1, E_2) = 5000E_1^2 + 3000E_2^2.
\]</p>
<h1>Plot untreated CRUD concentrations</h1>
<p><em>Plot the CRUD concentrations from <span class="math">$x = 0 \text{ to } 15$</span>. I recommend writing a function to calculate these concentrations, as you may want to reuse this later for different values of <span class="math">$E_1$</span> and <span class="math">$E_2$</span> (and rerunning functions is typically preferable to copying and pasting sections of code with slightly different values).</em></p>
<p><em>If you want to compute exponentials, use the <a href="https://docs.julialang.org/en/v1/base/math/#Base.exp-Tuple{Float64}"><code>exp</code> function</a>.</em></p>
<p><strong>Response</strong>:</p>
<p>First, we'll write a function to calculate the CRUD concentrations and costs. We could do this with two different functions, but this will make it easier to evaluate over multiple concentrations later, at the expense of making us do a little more work to separate the outputs. Either approach works perfectly well.</p>
<p>One feature of the below function is that I set an optional value for <code>max_dist</code>. This is because the length of the river segment I'm considering is the same across all of the simulations. Using optional values means that I don't have to explicitly set this in future calls, which makes it a little easier to use broadcasting to evaluate over different strategies.</p>
<p>In the code below, I also take advantage of our ability to name variables with subscripts in Julia (see <a href="https://viveks.me/environmental-systems-analysis/tutorials/julia-basics/#variables">the Julia Basics tutorial on the website</a> for more details, including the use of Greek letters). This keeps things a little cleaner and more in sync with the mathematical notation, but is otherwise not essential.</p>
<p>We'll also set a random seed for reproducibility in random number generation.</p>
<pre class='hljl'>
<span class='hljl-n'>Random</span><span class='hljl-oB'>.</span><span class='hljl-nf'>seed</span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span>
</pre>
<pre class="julia-error">
ERROR: UndefVarError: seed not defined
</pre>
<pre class='hljl'>
<span class='hljl-cs'># Function to evaluate CRUD concentrations and cost of treatment</span><span class='hljl-t'>
</span><span class='hljl-cs'># E₁ and E₂ are treatment efficiencies at waste sources 1 and 2</span><span class='hljl-t'>
</span><span class='hljl-cs'># max_dist is the length that we model downriver from waste source 1 (x=0)</span><span class='hljl-t'>
</span><span class='hljl-cs'># we set max_dist to be 15 by default so we don't have to keep repeating it (this will come in handy later)</span><span class='hljl-t'>
</span><span class='hljl-k'>function</span><span class='hljl-t'> </span><span class='hljl-nf'>crud_treatment</span><span class='hljl-p'>(</span><span class='hljl-n'>E₁</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>max_dist</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>15</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-cs'># initialize concentration storage</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>zeros</span><span class='hljl-p'>(</span><span class='hljl-n'>max_dist</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-cs'># we're using a spatial step of 1 km with this loop</span><span class='hljl-t'>
</span><span class='hljl-cs'># you could do something else, but make sure your indices are integers</span><span class='hljl-t'>
</span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-oB'>:</span><span class='hljl-p'>(</span><span class='hljl-n'>max_dist</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-k'>if</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'><</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-t'>
</span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>1000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.45</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>25</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>600000</span><span class='hljl-t'> </span><span class='hljl-cs'># convert mass to concentration</span><span class='hljl-t'>
</span><span class='hljl-k'>else</span><span class='hljl-t'>
</span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>((</span><span class='hljl-ni'>1100</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>1000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.18</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1200</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.45</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>25</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>660000</span><span class='hljl-t'> </span><span class='hljl-cs'># convert mass to concentration</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>.*</span><span class='hljl-t'> </span><span class='hljl-nfB'>1e3</span><span class='hljl-t'> </span><span class='hljl-cs'># convert kg/m³ to mg/L</span><span class='hljl-t'>
</span><span class='hljl-n'>cost</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>5000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>3000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-cs'># compute cost of this treatment</span><span class='hljl-t'>
</span><span class='hljl-k'>return</span><span class='hljl-t'> </span><span class='hljl-n'>conc</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>cost</span><span class='hljl-t'> </span><span class='hljl-cs'># return both, this will be returned as a tuple</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span>
</pre>
<pre class="output">
crud_treatment (generic function with 2 methods)
</pre>
<p>Next, we create our plot. Make sure to add labels, and I've also turned off the legend and grid as they don't add much to this particular plot.</p>
<pre class='hljl'>
<span class='hljl-cs'># plot untreated CRUD concentration</span><span class='hljl-t'>
</span><span class='hljl-cs'># note that we don't have to specify max_dist = 15</span><span class='hljl-t'>
</span><span class='hljl-n'>crud_untreated</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>crud_treatment</span><span class='hljl-p'>(</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>plot</span><span class='hljl-p'>(</span><span class='hljl-n'>crud_untreated</span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>xlabel</span><span class='hljl-oB'>=</span><span class='hljl-s'>"Distance Downstream (km)"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>ylabel</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-s'>"CRUD Concentration (mg/L)"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>grid</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>legend</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p><em>In the absence of any treatment, what is the maximum concentration? How far downstream does it occur? Does this make sense physically?</em></p>
<p><em>You can use the <a href="https://docs.julialang.org/en/v1/base/collections/#Base.maximum"><code>maximum</code> function</a> to find the maximum over a data structure, or use the <a href="https://docs.julialang.org/en/v1/base/collections/#Base.findmax"><code>findmax</code> function</a> to find the maximum value along with the index at which it occurs.</em></p>
<p><strong>Response</strong>:</p>
<p>We will use <code>findmax()</code> to find the function and the distance downstream.</p>
<pre class='hljl'>
<span class='hljl-n'>crud_max</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>findmax</span><span class='hljl-p'>(</span><span class='hljl-n'>crud_untreated</span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>])</span>
</pre>
<pre class="output">
(3.2102988372006047, 11)
</pre>
<p>The maximum concentration is 3.21 mg/L, and it occurs 10 km downriver. This makes sense, as this is where the second waste stream is located, and there isn't enough distance between the two waste streams for most of the CRUD from waste stream 1 to decay, so the inflow at waste stream 2 is much higher than at waste stream 1.</p>
<h1>Experiment with different treatment plans</h1>
<p><em>Play with different values of <span class="math">$E_1$</span> and <span class="math">$E_2$</span>. Can you find combinations that bring the CRUD concentrations into compliance? What is the treatment cost?</em></p>
<p><strong>Response</strong>:</p>
<p>We could manually test different strategies by evaluating our function several times. Instead, I'm going to do something overkill and randomly sample treatment strategies, then filter out the ones that result in compliance with the effluent standard. Plotting those will give us some insight into what types of strategies will work.</p>
<p>Notice that I can directly sample each treatment in one command by sampling directly into an array by specifying a tuple with dimensions instead of a single value in the <code>rand()</code> call. This is also allowed because <span class="math">$E_1$</span> and <span class="math">$E_2$</span> are independent, not correlated.</p>
<pre class='hljl'>
<span class='hljl-cs'># evaluating different treatment plans</span><span class='hljl-t'>
</span><span class='hljl-cs'># generate some potential plans...this could also be done manually</span><span class='hljl-t'>
</span><span class='hljl-cs'># we'll sample 1000 strategies, each of which consists of two values, E₁ and E₂</span><span class='hljl-t'>
</span><span class='hljl-n'>n_treatment_samples</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>1000</span><span class='hljl-t'>
</span><span class='hljl-n'>treatment_samples</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>rand</span><span class='hljl-p'>(</span><span class='hljl-nf'>Uniform</span><span class='hljl-p'>(</span><span class='hljl-ni'>0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>),</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>n_treatment_samples</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>))</span><span class='hljl-t'>
</span><span class='hljl-cs'># now broadcast over the treatment samples and evaluate the cost and the maximum</span><span class='hljl-t'>
</span><span class='hljl-n'>treatment_output</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>crud_treatment</span><span class='hljl-oB'>.</span><span class='hljl-p'>(</span><span class='hljl-n'>treatment_samples</span><span class='hljl-p'>[</span><span class='hljl-oB'>:</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>treatment_samples</span><span class='hljl-p'>[</span><span class='hljl-oB'>:</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>])</span>
</pre>
<pre class="output">
1000-element Vector{Tuple{Vector{Float64}, Float64}}:
([0.331305464341627, 0.3253953168837186, 0.3195906003550694, 0.31388943397
67441, 0.3082899705209617, 0.30279039571257776, 0.2973889276412438, 0.29208
3816184052, 0.28687334243848067, 0.2817558181654545, 1.9544270923091334, 1.
9195621306513706, 1.8853191239164493, 1.851686977070627, 1.8186547930041082
], 4073.0279481507246)
([1.545665523431573, 1.5180924461741871, 1.4910112441497776, 1.46441314281
198, 1.438289524143278, 1.412631923862691, 1.387432028683273, 1.36268167361
8535, 1.3383728393369172, 1.3144976495634566, 1.8775708366591402, 1.8440769
112589797, 1.811180482910226, 1.7788708928823134, 1.747137672585425], 1275.
7479467933786)
([1.205404163557306, 1.1839009976884378, 1.1627814260996985, 1.14203860586
51366, 1.1216658161295374, 1.1016564559308024, 1.0820040420611836, 1.062702
2069666663, 1.0437446966838255, 1.0251253688134876, 0.9362113630321212, 0.9
195103188212, 0.9031072039975401, 0.8869967038084424, 0.8711735983109097],
3641.1447033237737)
([1.7963718338957977, 1.7643264148784705, 1.732852653054058, 1.70194035064
83939, 1.671579491805075, 1.6417602393402362, 1.612472931555217, 1.58370807
91060876, 1.5554563619290163, 1.5277086262204893, 2.5021939855666497, 2.457
557428024872, 2.413717140588718, 2.3706589186215417, 2.328368810882746], 42
2.13475777227484)
([1.7386360235418539, 1.707620551777198, 1.677158364009744, 1.647239590224
1685, 1.6178545364760337, 1.5889936817508614, 1.560647674879243, 1.53280733
15069792, 1.5054636311192666, 1.478607714117975, 2.4682096998921366, 2.4241
79386922833, 2.3809345292818422, 2.3384611152569788, 2.2967453830905376], 4
23.73975605645296)
([0.36887816291386893, 0.362297757301919, 0.35583473933274984, 0.349487014
9320004, 0.3432525273814343, 0.33712925665254545, 0.3311152187520506, 0.325
20846507905854, 0.31940708179370647, 0.31370918919705904, 0.773251122684043
3, 0.759457120927575, 0.7459091899220899, 0.7326029400194237, 0.71953405987
82033], 5453.642040476786)
([0.8022112636767346, 0.7879006429021986, 0.7738453088285923, 0.7600407074
047182, 0.7464823658189511, 0.7331658910500078, 0.720086968443569, 0.707241
360314295, 0.6946249045727768, 0.6822335133769846, 1.0432885689816112, 1.02
46773779585938, 1.0063981913700089, 0.9884450865994948, 0.9708122466840496]
, 3652.1636875299264)
([1.8246784152391258, 1.792128036033168, 1.7601583219885903, 1.72875891463
83682, 1.697919640299835, 1.6676305067783206, 1.6378817001295916, 1.6086635
814800483, 1.5799666839036457, 1.5517817093545256, 2.3986908597303014, 2.35
5900691101133, 2.313873854905523, 2.272596734080889, 2.2320559544789886], 5
88.2700944378869)
([1.7844284669551345, 1.752596105274195, 1.7213316000632404, 1.69062482134
90778, 1.6604658198667779, 1.6308448238360265, 1.6017522357949832, 1.573178
629490617, 1.5451147468245208, 1.5175514948532058, 3.158077673666513, 3.101
740828236003, 3.0464089739681635, 2.9920641828581624, 2.9386888467182684],
4.511567837555354)
([1.4698333162334198, 1.4436130072664406, 1.4178604415426783, 1.3925672750
055529, 1.3677253124478395, 1.3433265048563494, 1.31936294680398, 1.2958268
73888287, 1.2727106602157492, 1.2500068159309148, 1.9157317479568738, 1.881
5570712948952, 1.8479920355840553, 1.815025765459153, 1.782647579560277], 1
179.3153384434593)
⋮
([0.777915837917787, 0.7640386224572061, 0.7504089621941835, 0.73702244099
95604, 0.723874721523363, 0.7109615437894636, 0.6982787238153109, 0.6858221
522562824, 0.6735877930742221, 0.6615716822297274, 1.3856308684566623, 1.36
09126442309245, 1.3366353676073095, 1.312791172535812, 1.2893723332886369],
2955.221911363183)
([0.5644933872469005, 0.5544234079778498, 0.5445330667431324, 0.5348191589
856663, 0.5252785373143602, 0.5159081104843302, 0.50670484239531, 0.4976657
511079278, 0.48878790787753135, 0.48006843620525025, 0.5181534311702286, 0.
5089101088781474, 0.49983167791333644, 0.49091519678474416, 0.4821577764744
827], 5609.797274040928)
([1.4303046916419448, 1.4047895325299735, 1.3797295375157734, 1.3551165869
417328, 1.330942705996549, 1.3072000621313211, 1.2838809625217331, 1.260977
8515755143, 1.238483308484359, 1.216390044819522, 2.1192930021170056, 2.081
487002828961, 2.0443554235388777, 2.0078862332902347, 1.9720676157463568],
851.5612720267936)
([1.1848804398162787, 1.1637433959911134, 1.1429834152067868, 1.1225937710
47914, 1.1025678570914172, 1.0828991847659855, 1.0635813812497226, 1.044608
1874052948, 1.0259734557519176, 1.0076711484735168, 2.2509107505928716, 2.2
10756826548692, 2.171319207056224, 2.132585113981748, 2.0945419971402583],
954.7948457150449)
([1.6419860485168238, 1.6126947125292106, 1.5839259037364626, 1.5556703007
928583, 1.5279187486358619, 1.500662255519801, 1.4738919901024639, 1.447599
2785836662, 1.421775601894865, 1.396412592938905, 2.772380264102526, 2.7229
238622807155, 2.6743497116106787, 2.6266420736426683, 2.579785490684631], 1
43.61166831456256)
([0.8681343830900857, 0.8526477619214952, 0.8374374060868103, 0.8224983872
976791, 0.8078258651813259, 0.7934150857122285, 0.779261379671772, 0.765360
1611353814, 0.7517069259866416, 0.7382972504579245, 1.9032591287114626, 1.8
6930695070061, 1.835960444494658, 1.8032088055338782, 1.771041422000732], 1
976.029959099784)
([0.489997695078215, 0.48125664205120744, 0.47267152038630317, 0.464239548
4289791, 0.45595799414655747, 0.4478241742430028, 0.43983545328951124, 0.43
198924287060747, 0.42428300074547654, 0.41671423002425495, 0.59062993469820
83, 0.5800937064049082, 0.5697454335471974, 0.5595817631941431, 0.549599402
2276378], 5570.302406701656)
([0.32776129433015094, 0.32191437120639393, 0.3161717511550451, 0.31053157
351697086, 0.30499201082527566, 0.2995512682131867, 0.2942075828325017, 0.2
889592232824102, 0.2838044890485047, 0.2787417099517994, 0.6877978653200808
, 0.6755282614566059, 0.6634775346594282, 0.6516417803876443, 0.64001716375
33298], 5806.5476454525)
([0.5946714330419733, 0.5840631085904947, 0.5736440256956385, 0.5634108084
833999, 0.5533601413018809, 0.5434887676469905, 0.5337934891073087, 0.52427
11643277737, 0.5149187079918546, 0.5057330898218824, 1.1594479115540535, 1.
1387645577776049, 1.1184501736798964, 1.0984981772227678, 1.078902103784825
2], 3880.424344435279)
</pre>
<p>In the code above, notice that I could just use the broadcast operator <code>.</code> to broadcast over the treatment samples, because I set <code>max_dist</code> to be optional. If I hadn't done this, I'd need to write a loop, since I don't have multiple distances to broadcast over.</p>
<p>Now, let's find those treatment strategies which result in compliance with the standard. This would not be necessary if we had done the previous step by trial and error, we'd just have to check the maximum values each time we proposed a new strategy. On the other hand, this allows us to more efficiently get a sense of the cost-concentration tradeoff.</p>
<p>One feature of the below code is the use of a <a href="https://viveks.me/environmental-systems-analysis/tutorials/julia-basics/#comprehensions">comprehension</a>, which may be familiar to you if you've used Python before. A comprehension lets us loop over a data structure and do something to those values without having to pre-allocate memory. In some cases, this can make things more compact and readable, but other times it can make things less readable. Use your judgement about when these are useful, and they're never necessary.</p>
<p>What does the comprehension line do? Each element in <code>treatment_output</code> is a tuple: the first part is the time series of concentrations, and the second part is the cost. We want to know the maximum concentrations, so we use <code>maximum()</code> on the first part of each element and collect those into a vector. Similarly, we want to collect the costs, and can use a concentration to do that. We could easily have pre-allocated <code>concentrations</code> and <code>costs</code> vectors and done a single loop through <code>treatment_output</code> to populate them; this would actually be faster for larger data structures!</p>
<pre class='hljl'>
<span class='hljl-cs'># find maximum concentrations</span><span class='hljl-t'>
</span><span class='hljl-n'>concentrations</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-nf'>maximum</span><span class='hljl-p'>(</span><span class='hljl-n'>o</span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>])</span><span class='hljl-t'> </span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>o</span><span class='hljl-t'> </span><span class='hljl-kp'>in</span><span class='hljl-t'> </span><span class='hljl-n'>treatment_output</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-cs'># collect costs</span><span class='hljl-t'>
</span><span class='hljl-n'>costs</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>[</span><span class='hljl-n'>o</span><span class='hljl-p'>[</span><span class='hljl-ni'>2</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>o</span><span class='hljl-t'> </span><span class='hljl-kp'>in</span><span class='hljl-t'> </span><span class='hljl-n'>treatment_output</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-cs'># plot concentrations vs. costs</span><span class='hljl-t'>
</span><span class='hljl-nf'>scatter</span><span class='hljl-p'>(</span><span class='hljl-n'>concentrations</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>costs</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>xlabel</span><span class='hljl-oB'>=</span><span class='hljl-s'>"Maximum CRUD Concentration (mg/L)"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>ylabel</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-s'>"Treatment Cost (</span><span class='hljl-se'>\$\$</span><span class='hljl-s'>)"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>legend</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>grid</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-nf'>vline!</span><span class='hljl-p'>([</span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>color</span><span class='hljl-oB'>=:</span><span class='hljl-n'>red</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-cs'># plot red line to mark regulatory threshold</span>
</pre>
<img src="" />
<p>This tradeoff between cost and maximum concentration makes complete sense! We can see how decreasing the maximum concentration increases the cost. However, this plot doesn't show us what treatment levels are needed to comply. Let's filter our sampled treatment plans to identify those which resulted in compliance (maximum concentration <span class="math">$\leq 1$</span> mg/L).</p>
<pre class='hljl'>
<span class='hljl-cs'># filter treatments which comply</span><span class='hljl-t'>
</span><span class='hljl-n'>treatment_comply</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>treatment_samples</span><span class='hljl-p'>[</span><span class='hljl-n'>concentrations</span><span class='hljl-t'> </span><span class='hljl-oB'>.<=</span><span class='hljl-t'> </span><span class='hljl-nfB'>1.0</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-oB'>:</span><span class='hljl-p'>]</span><span class='hljl-t'>
</span><span class='hljl-cs'># plot treatmnet levels for those</span><span class='hljl-t'>
</span><span class='hljl-nf'>scatter</span><span class='hljl-p'>(</span><span class='hljl-n'>treatment_comply</span><span class='hljl-p'>[</span><span class='hljl-oB'>:</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>treatment_comply</span><span class='hljl-p'>[</span><span class='hljl-oB'>:</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-ni'>2</span><span class='hljl-p'>],</span><span class='hljl-t'> </span><span class='hljl-n'>xlabel</span><span class='hljl-oB'>=</span><span class='hljl-s'>"E₁"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>ylabel</span><span class='hljl-oB'>=</span><span class='hljl-s'>"E₂"</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>legend</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>grid</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-kc'>false</span><span class='hljl-p'>)</span>
</pre>
<img src="" />
<p>We can see that there is a general "triangular" shape to the region where plans are in compliance. Moreover, if either <span class="math">$E_1$</span> or <span class="math">$E_2$</span> is on the lower side of the allowable ranges, the other needs to be much closer to 1. </p>
<p>So we could choose a number of different strategies within that range. For a balanced one, let's use <span class="math">$E_1 = E_2 = 0.75$</span>, but you might also choose a strategy with a higher <span class="math">$E_2$</span>, since the cost of increasing <span class="math">$E_2$</span> is lower than increasing <span class="math">$E_1$</span> (more on this later in the semester...)</p>
<p><em>Based on your plan, where does the maximum value occur, and what is it? Does this plan make sense?</em></p>
<p>Now, let's evaluate how well this plan works.</p>
<pre class='hljl'>
<span class='hljl-n'>crud_plan_out</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>crud_treatment</span><span class='hljl-p'>(</span><span class='hljl-nfB'>0.75</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.75</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>crud_plan_max</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>findmax</span><span class='hljl-p'>(</span><span class='hljl-n'>crud_plan_out</span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>])</span>
</pre>
<pre class="output">
(0.8974917787787049, 11)
</pre>
<p>The maximum concentration is 0.9 mg/L, and it occurs 10 km downstream. This is the same as before, which makes sense given the balanced treatment plan. We might have gotten a different result if we had opted to make <span class="math">$E_2$</span> much higher than <span class="math">$E_1$</span>, so waste stream 2 would not substantially increase the CRUD concentration. For example:</p>
<pre class='hljl'>
<span class='hljl-n'>crud_plan_2_out</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>crud_treatment</span><span class='hljl-p'>(</span><span class='hljl-nfB'>0.6</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.95</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>crud_plan_2_max</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>findmax</span><span class='hljl-p'>(</span><span class='hljl-n'>crud_plan_2_out</span><span class='hljl-p'>[</span><span class='hljl-ni'>1</span><span class='hljl-p'>])</span>
</pre>
<pre class="output">
(0.8333333333333334, 1)
</pre>
<p>In this case, the maximum outflow is right after waste stream 1, as waste stream 2 is so heavily treated that it doesn't add much more CRUD. The cost of the first, balanced plan is 4500.0 dollars, while the cost of the second plan is 4508.0 dollars.</p>
<h1>Some other questions to consider</h1>
<p><em>How would you trade off cost versus CRUD concentrations? From your current understanding of the system, would you expect the managers of waste source 1 or waste source 2 to treat their waste stream more aggressively?</em></p>
<p><strong>Response</strong>: </p>
<p>We've actually addressed this somewhat above. Navigating the tradeoffs between costs and CRUD concentrations would reflect concerns about cost vs. the potential impacts of higher CRUD concentrations, even those within the regulatory level (which we don't actually know anything about, since CRUD is made up). The considerations about waste stream 1 and waste stream 2 would reflect questions of cost (since treatment at waste stream 2 is less expensive) and equity. One could argue that waste stream 1 outputs a lot more wastewater in the river, so they should treat at a higher level, but then again, waste stream 2 is more highly concentrated and is cheaper to treat.</p>
<h1>Uncertainty analysis</h1>
<p><em>Suppose the initial inflow is uncertain, and its fluctuations are distributed based on a normal distribution with mean 0.15 mg/L and standard deviation 0.05 mg/L. Note that the inflow cannot be less than 0 mg/L.</em></p>
<p><strong>Response</strong>:</p>
<p>This problem is actually a little more complex, since our equations above relied on the initial inflow being 0.2 mg/L. I've written a new function below which accounts for that change (review <a href="https://viveks.me/environmental-systems-analysis/assets/lecture-notes/02-intro-modeling/index.html#1">the notes from lecture 2</a> to make sure you understand how this works!). I've used the optional argument trick to fix the balanced strategy from above.</p>
<pre class='hljl'>
<span class='hljl-k'>function</span><span class='hljl-t'> </span><span class='hljl-nf'>crud_inflow</span><span class='hljl-p'>(</span><span class='hljl-n'>inflow</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.75</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nfB'>0.75</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>max_dist</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>15</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-cs'># initialize concentration storage</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-nf'>zeros</span><span class='hljl-p'>(</span><span class='hljl-n'>max_dist</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-cs'># we're using a spatial step of 1 km with this loop</span><span class='hljl-t'>
</span><span class='hljl-cs'># you could do something else, but make sure your indices are integers</span><span class='hljl-t'>
</span><span class='hljl-k'>for</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>0</span><span class='hljl-oB'>:</span><span class='hljl-p'>(</span><span class='hljl-n'>max_dist</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-k'>if</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'><</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-t'>
</span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>500</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>inflow</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.45</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>25</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>600000</span><span class='hljl-t'> </span><span class='hljl-cs'># convert mass to concentration</span><span class='hljl-t'>
</span><span class='hljl-k'>else</span><span class='hljl-t'>
</span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-p'>((</span><span class='hljl-ni'>500</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>inflow</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.18</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1200</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-ni'>1</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-p'>))</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-nf'>exp</span><span class='hljl-p'>(</span><span class='hljl-oB'>-</span><span class='hljl-nfB'>0.45</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-p'>(</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>-</span><span class='hljl-t'> </span><span class='hljl-ni'>10</span><span class='hljl-p'>)</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>25</span><span class='hljl-p'>)</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-p'>[</span><span class='hljl-n'>x</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>1</span><span class='hljl-p'>]</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>mass</span><span class='hljl-t'> </span><span class='hljl-oB'>/</span><span class='hljl-t'> </span><span class='hljl-ni'>660000</span><span class='hljl-t'> </span><span class='hljl-cs'># convert mass to concentration</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span><span class='hljl-t'>
</span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-n'>conc</span><span class='hljl-t'> </span><span class='hljl-oB'>.*</span><span class='hljl-t'> </span><span class='hljl-nfB'>1e3</span><span class='hljl-t'> </span><span class='hljl-cs'># convert kg/m³ to mg/L</span><span class='hljl-t'>
</span><span class='hljl-n'>cost</span><span class='hljl-t'> </span><span class='hljl-oB'>=</span><span class='hljl-t'> </span><span class='hljl-ni'>5000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₁</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-oB'>+</span><span class='hljl-t'> </span><span class='hljl-ni'>3000</span><span class='hljl-t'> </span><span class='hljl-oB'>*</span><span class='hljl-t'> </span><span class='hljl-n'>E₂</span><span class='hljl-oB'>^</span><span class='hljl-ni'>2</span><span class='hljl-t'> </span><span class='hljl-cs'># compute cost of this treatment</span><span class='hljl-t'>
</span><span class='hljl-k'>return</span><span class='hljl-t'> </span><span class='hljl-n'>conc</span><span class='hljl-p'>,</span><span class='hljl-t'> </span><span class='hljl-n'>cost</span><span class='hljl-t'> </span><span class='hljl-cs'># return both, this will be returned as a tuple</span><span class='hljl-t'>
</span><span class='hljl-k'>end</span>
</pre>
<pre class="output">
crud_inflow (generic function with 4 methods)
</pre>
<p><em>How frequently will your plan fail to keep concentrations in compliance? Is this acceptable?</em></p>
<p><strong>Response</strong>:</p>
<p>Now, let's sample a lot of random inflows for our Monte Carlo analysis. Since inflow can't be less than 0, we have two options: we could sample directly from <a href="https://juliastats.org/Distributions.jl/stable/truncate/">a truncated distribution</a>, which will ensure no samples are out of the allowable range, or we could draw samples from a normal and manually set negatives to 0. Let's go the truncated route.</p>
<pre class='hljl'>