forked from mathcbc/advGAN_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
154 lines (132 loc) · 5.08 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch.nn as nn
import torch.nn.functional as F
# Target Model definition
class MNIST_target_net(nn.Module):
def __init__(self):
super(MNIST_target_net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3)
self.fc1 = nn.Linear(64*4*4, 200)
self.fc2 = nn.Linear(200, 200)
self.logits = nn.Linear(200, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 64*4*4)
x = F.relu(self.fc1(x))
x = F.dropout(x, 0.5)
x = F.relu(self.fc2(x))
x = self.logits(x)
return x
class Discriminator(nn.Module):
def __init__(self, image_nc):
super(Discriminator, self).__init__()
# MNIST: 1*28*28
model = [
nn.Conv2d(image_nc, 8, kernel_size=4, stride=2, padding=0, bias=True),
nn.LeakyReLU(0.2),
# 8*13*13
nn.Conv2d(8, 16, kernel_size=4, stride=2, padding=0, bias=True),
nn.BatchNorm2d(16),
nn.LeakyReLU(0.2),
# 16*5*5
nn.Conv2d(16, 32, kernel_size=4, stride=2, padding=0, bias=True),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2),
nn.Conv2d(32, 1, 1),
nn.Sigmoid()
# 32*1*1
]
self.model = nn.Sequential(*model)
def forward(self, x):
output = self.model(x).squeeze()
return output
class Generator(nn.Module):
def __init__(self,
gen_input_nc,
image_nc,
):
super(Generator, self).__init__()
encoder_lis = [
# MNIST:1*28*28
nn.Conv2d(gen_input_nc, 8, kernel_size=3, stride=1, padding=0, bias=True),
nn.InstanceNorm2d(8),
nn.ReLU(),
# 8*26*26
nn.Conv2d(8, 16, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(16),
nn.ReLU(),
# 16*12*12
nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=0, bias=True),
nn.InstanceNorm2d(32),
nn.ReLU(),
# 32*5*5
]
bottle_neck_lis = [ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),
ResnetBlock(32),]
decoder_lis = [
nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(16),
nn.ReLU(),
# state size. 16 x 11 x 11
nn.ConvTranspose2d(16, 8, kernel_size=3, stride=2, padding=0, bias=False),
nn.InstanceNorm2d(8),
nn.ReLU(),
# state size. 8 x 23 x 23
nn.ConvTranspose2d(8, image_nc, kernel_size=6, stride=1, padding=0, bias=False),
nn.Tanh()
# state size. image_nc x 28 x 28
]
self.encoder = nn.Sequential(*encoder_lis)
self.bottle_neck = nn.Sequential(*bottle_neck_lis)
self.decoder = nn.Sequential(*decoder_lis)
def forward(self, x):
x = self.encoder(x)
x = self.bottle_neck(x)
x = self.decoder(x)
return x
# Define a resnet block
# modified from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
class ResnetBlock(nn.Module):
def __init__(self, dim, padding_type='reflect', norm_layer=nn.BatchNorm2d, use_dropout=False, use_bias=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim),
nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias),
norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out